whisper_test / README.md
wangpuupup's picture
Upload 26 files
84b61f5
metadata
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - data/copas
metrics:
  - wer
model-index:
  - name: Whisper Small dysarthric Dutch
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: data/copas copas-full
          type: data/copas
          config: copas-full
          split: test
          args: copas-full
        metrics:
          - name: Wer
            type: wer
            value: 24.555998550199348

Whisper Small dysarthric Dutch

This model is a fine-tuned version of qmeeus/whisper-small-nl on the data/copas copas-full dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4242
  • Wer: 24.5560

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3363 2.02 500 0.3762 29.7934
0.0945 5.02 1000 0.3418 27.6912
0.0332 8.01 1500 0.3353 26.1689
0.0147 11.01 2000 0.3476 26.1327
0.0071 14.01 2500 0.3623 25.9333
0.0034 17.01 3000 0.3789 25.2084
0.0024 20.01 3500 0.3827 24.8641
0.0026 23.01 4000 0.3877 25.3171
0.0021 26.01 4500 0.3933 25.4259
0.0014 29.01 5000 0.3941 25.0997
0.0008 32.01 5500 0.4014 25.0997
0.0004 35.01 6000 0.4035 24.8278
0.0003 38.01 6500 0.4080 24.9184
0.0003 41.01 7000 0.4120 24.8097
0.0002 44.01 7500 0.4151 24.6104
0.0002 47.01 8000 0.4176 24.3929
0.0002 50.01 8500 0.4200 24.5198
0.0001 53.0 9000 0.4230 24.5198
0.0001 56.0 9500 0.4252 24.4291
0.0001 59.0 10000 0.4242 24.5560

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1