llama2 / README.md
Ubuntu
add model files
2439f29
|
raw
history blame
4.16 kB
metadata
language:
  - en
license: llama2
tags:
  - meta
  - llama-2
  - wasmedge
  - second-state
  - llama.cpp
model_name: Llama 2 GGUF
inference: false
model_creator: Meta Llama 2
model_type: llama
pipeline_tag: text-generation
prompt_template: >
  [INST] <<SYS>>

  You are a helpful, respectful and honest assistant. Always answer as helpfully
  as possible, while being safe.  Your answers should not include any harmful,
  unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure
  that your responses are socially unbiased and positive in nature. If a
  question does not make any sense, or is not factually coherent, explain why
  instead of answering something not correct. If you don't know the answer to a
  question, please don't share false information.

  <</SYS>>

  {prompt}[/INST]
quantized_by: wasmedge

This repo contains GGUF model files for cross-platform AI inference using the WasmEdge Runtime. Learn more on why and how.

Prerequisite

Install WasmEdge with the GGML plugin.

curl -sSf https://raw.githubusercontent.com/WasmEdge/WasmEdge/master/utils/install.sh | bash -s -- --plugin wasi_nn-ggml

Download the cross-platform Wasm apps for inference.

curl -LO https://github.com/second-state/llama-utils/raw/main/simple/llama-simple.wasm

curl -LO https://github.com/second-state/llama-utils/raw/main/chat/llama-chat.wasm

Use the f16 models

The f16 version is an GGUF equivalent of the original llama2 models. It gives the best quality inference results but also consumes the most computing resources in both VRAM and computing time. The f16 models are also great as a basis for fine-tuning.

Chat with the 7b chat model

wasmedge --dir .:. --nn-preload default:GGML:CPU:llama-2-7b-chat-f16.gguf llama-chat.wasm

Generate text with the 7b base model

wasmedge --dir .:. --nn-preload default:GGML:CPU:llama-2-7b-f16.gguf llama-simple.wasm 'Robert Oppenheimer most important achievement is '

Chat with the 13b chat model

wasmedge --dir .:. --nn-preload default:GGML:CPU:llama-2-13b-chat-f16.gguf llama-chat.wasm

Generate text with the 13b base model

wasmedge --dir .:. --nn-preload default:GGML:CPU:llama-2-13b-f16.gguf llama-simple.wasm 'Robert Oppenheimer most important achievement is '

Use the quantized models

The q5_k_m version is a quantized version of the llama2 models. They are only half of the size of the original models, and hence consumes half as much VRAM, but still gives high quality inference results.

Chat with the 7b chat model

wasmedge --dir .:. --nn-preload default:GGML:CPU:llama-2-7b-chat-q5_k_m.gguf llama-chat.wasm

Generate text with the 7b base model

wasmedge --dir .:. --nn-preload default:GGML:CPU:llama-2-7b-q5_k_m.gguf llama-simple.wasm 'Robert Oppenheimer most important achievement is '

Chat with the 13b chat model

wasmedge --dir .:. --nn-preload default:GGML:CPU:llama-2-13b-chat-q5_k_m.gguf llama-chat.wasm

Generate text with the 13b base model

wasmedge --dir .:. --nn-preload default:GGML:CPU:llama-2-13b-q5_k_m.gguf llama-simple.wasm 'Robert Oppenheimer most important achievement is '

Resource constrained models

The q2_k version is the smallest quantized version of the llama2 models. They can run on devices with only 4GB of RAM, but the inference quality is rather low.

Chat with the 7b chat model

wasmedge --dir .:. --nn-preload default:GGML:CPU:llama-2-7b-chat-q2_k.gguf llama-chat.wasm

Generate text with the 7b base model

wasmedge --dir .:. --nn-preload default:GGML:CPU:llama-2-7b-q2_k.gguf llama-simple.wasm 'Robert Oppenheimer most important achievement is '

Chat with the 13b chat model

wasmedge --dir .:. --nn-preload default:GGML:CPU:llama-2-13b-chat-q2_k.gguf llama-chat.wasm

Generate text with the 13b base model

wasmedge --dir .:. --nn-preload default:GGML:CPU:llama-2-13b-q2_k.gguf llama-simple.wasm 'Robert Oppenheimer most important achievement is '