wbbbbb's picture
Update README.md
2688329
|
raw
history blame
4.69 kB
---
language: zh
datasets:
- common_voice
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Chinese (zh-CN) by wbbbbb
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice zh-CN
type: common_voice
args: zh-CN
metrics:
- name: Test WER
type: wer
value: 70.47
- name: Test CER
type: cer
value: 12.30
---
# Fine-tuned XLSR-53 large model for speech recognition in Chinese
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Chinese using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice), [CSS10](https://github.com/Kyubyong/css10) and [ST-CMDS](http://www.openslr.org/38/).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned on RTX3090 for 50h
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
## Usage
The model can be used directly (without a language model) as follows...
Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:
```python
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("wbbbbb/wav2vec2-large-chinese-zh-cn")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
```
## Evaluation
The model can be evaluated as follows on the Chinese (zh-CN) test data of Common Voice.
```python
import torch
import re
import librosa
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import warnings
import os
os.environ["KMP_AFFINITY"] = ""
LANG_ID = "zh-CN"
MODEL_ID = "zh-CN-output-aishell"
DEVICE = "cuda"
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
wer = load_metric("wer")
cer = load_metric("cer")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = (
re.sub("([^\u4e00-\u9fa5\u0030-\u0039])", "", batch["sentence"]).lower() + " "
)
return batch
test_dataset = test_dataset.map(
speech_file_to_array_fn,
num_proc=15,
remove_columns=['client_id', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],
)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
inputs = processor(
batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True
)
with torch.no_grad():
logits = model(
inputs.input_values.to(DEVICE),
attention_mask=inputs.attention_mask.to(DEVICE),
).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
predictions = [x.lower() for x in result["pred_strings"]]
references = [x.lower() for x in result["sentence"]]
print(
f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}"
)
print(f"CER: {cer.compute(predictions=predictions, references=references) * 100}")
```
**Test Result**:
In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2022-07-18). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.
| Model | WER | CER |
| ------------- | ------------- | ------------- |
| wbbbbb/wav2vec2-large-chinese-zh-cn | **70.47%** | **12.30%** |
| jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn | **82.37%** | **19.03%** |
| ydshieh/wav2vec2-large-xlsr-53-chinese-zh-cn-gpt | 84.01% | 20.95% |
## Citation
If you want to cite this model you can use this:
```bibtex
@misc{grosman2021xlsr53-large-chinese,
title={Fine-tuned {XLSR}-53 large model for speech recognition in {C}hinese},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/wbbbbb/wav2vec2-large-chinese-zh-cn}},
year={2021}
}
```