|
--- |
|
language: zh |
|
datasets: |
|
- common_voice |
|
metrics: |
|
- wer |
|
- cer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: XLSR Wav2Vec2 Chinese (zh-CN) by wbbbbb |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice zh-CN |
|
type: common_voice |
|
args: zh-CN |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 70.47 |
|
- name: Test CER |
|
type: cer |
|
value: 12.30 |
|
--- |
|
# Fine-tuned XLSR-53 large model for speech recognition in Chinese |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Chinese using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice), [CSS10](https://github.com/Kyubyong/css10) and [ST-CMDS](http://www.openslr.org/38/). |
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
This model has been fine-tuned on RTX3090 for 50h |
|
|
|
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint |
|
|
|
## Usage |
|
|
|
The model can be used directly (without a language model) as follows... |
|
|
|
Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: |
|
|
|
```python |
|
from huggingsound import SpeechRecognitionModel |
|
model = SpeechRecognitionModel("wbbbbb/wav2vec2-large-chinese-zh-cn") |
|
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] |
|
transcriptions = model.transcribe(audio_paths) |
|
``` |
|
|
|
|
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows on the Chinese (zh-CN) test data of Common Voice. |
|
|
|
```python |
|
import torch |
|
import re |
|
import librosa |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import warnings |
|
import os |
|
|
|
os.environ["KMP_AFFINITY"] = "" |
|
|
|
|
|
LANG_ID = "zh-CN" |
|
MODEL_ID = "zh-CN-output-aishell" |
|
DEVICE = "cuda" |
|
|
|
test_dataset = load_dataset("common_voice", LANG_ID, split="test") |
|
|
|
wer = load_metric("wer") |
|
cer = load_metric("cer") |
|
|
|
|
|
|
|
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) |
|
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) |
|
model.to(DEVICE) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("ignore") |
|
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) |
|
batch["speech"] = speech_array |
|
batch["sentence"] = ( |
|
re.sub("([^\u4e00-\u9fa5\u0030-\u0039])", "", batch["sentence"]).lower() + " " |
|
) |
|
return batch |
|
|
|
|
|
test_dataset = test_dataset.map( |
|
speech_file_to_array_fn, |
|
num_proc=15, |
|
remove_columns=['client_id', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'], |
|
) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def evaluate(batch): |
|
inputs = processor( |
|
batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True |
|
) |
|
|
|
with torch.no_grad(): |
|
logits = model( |
|
inputs.input_values.to(DEVICE), |
|
attention_mask=inputs.attention_mask.to(DEVICE), |
|
).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
|
|
predictions = [x.lower() for x in result["pred_strings"]] |
|
references = [x.lower() for x in result["sentence"]] |
|
|
|
print( |
|
f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}" |
|
) |
|
print(f"CER: {cer.compute(predictions=predictions, references=references) * 100}") |
|
|
|
``` |
|
|
|
**Test Result**: |
|
|
|
In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2022-07-18). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. |
|
|
|
| Model | WER | CER | |
|
| ------------- | ------------- | ------------- | |
|
| wbbbbb/wav2vec2-large-chinese-zh-cn | **70.47%** | **12.30%** | |
|
| jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn | **82.37%** | **19.03%** | |
|
| ydshieh/wav2vec2-large-xlsr-53-chinese-zh-cn-gpt | 84.01% | 20.95% | |
|
|
|
|
|
## Citation |
|
If you want to cite this model you can use this: |
|
|
|
```bibtex |
|
@misc{grosman2021xlsr53-large-chinese, |
|
title={Fine-tuned {XLSR}-53 large model for speech recognition in {C}hinese}, |
|
author={Grosman, Jonatas}, |
|
howpublished={\url{https://huggingface.co/wbbbbb/wav2vec2-large-chinese-zh-cn}}, |
|
year={2021} |
|
} |
|
``` |