wcosmas's picture
End of training
a4e89d3 verified
|
raw
history blame
4.77 kB
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/resnet-18
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: resnet-18-finetuned-papsmear
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9117647058823529

resnet-18-finetuned-papsmear

This model is a fine-tuned version of microsoft/resnet-18 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2838
  • Accuracy: 0.9118

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9231 9 1.9256 0.1691
1.9692 1.9487 19 1.6557 0.2868
1.7979 2.9744 29 1.3300 0.5368
1.5079 4.0 39 1.0482 0.6324
1.217 4.9231 48 0.9019 0.6618
0.9536 5.9487 58 0.7687 0.6691
0.7881 6.9744 68 0.6150 0.7721
0.68 8.0 78 0.5481 0.7868
0.5678 8.9231 87 0.5341 0.7868
0.5169 9.9487 97 0.4800 0.7941
0.4838 10.9744 107 0.4356 0.8235
0.4738 12.0 117 0.4573 0.8162
0.3798 12.9231 126 0.4263 0.8088
0.3431 13.9487 136 0.4159 0.8382
0.3282 14.9744 146 0.3787 0.8603
0.3167 16.0 156 0.4234 0.8382
0.3186 16.9231 165 0.3853 0.8235
0.2568 17.9487 175 0.3904 0.8456
0.2528 18.9744 185 0.4013 0.8309
0.2661 20.0 195 0.3275 0.8824
0.2287 20.9231 204 0.3219 0.8824
0.2465 21.9487 214 0.3410 0.8529
0.2422 22.9744 224 0.3256 0.8603
0.222 24.0 234 0.3232 0.875
0.1917 24.9231 243 0.3307 0.8676
0.194 25.9487 253 0.3146 0.8971
0.212 26.9744 263 0.3125 0.8897
0.1718 28.0 273 0.3015 0.9044
0.1975 28.9231 282 0.3195 0.8824
0.1948 29.9487 292 0.3536 0.8971
0.1809 30.9744 302 0.3105 0.875
0.1744 32.0 312 0.3032 0.8824
0.1731 32.9231 321 0.2936 0.8971
0.1513 33.9487 331 0.2889 0.8824
0.1527 34.9744 341 0.2875 0.8897
0.1693 36.0 351 0.2754 0.8897
0.1743 36.9231 360 0.2875 0.8971
0.1463 37.9487 370 0.2961 0.8971
0.1429 38.9744 380 0.2848 0.8971
0.1483 40.0 390 0.2873 0.8897
0.1483 40.9231 399 0.2856 0.875
0.1613 41.9487 409 0.2801 0.8971
0.1358 42.9744 419 0.2838 0.9118
0.1453 44.0 429 0.2783 0.8971
0.1383 44.9231 438 0.2897 0.8897
0.1655 45.9487 448 0.2847 0.9044
0.1489 46.1538 450 0.2861 0.8897

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1