metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/resnet-18
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: resnet-18-finetuned-papsmear
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9117647058823529
resnet-18-finetuned-papsmear
This model is a fine-tuned version of microsoft/resnet-18 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2838
- Accuracy: 0.9118
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.9231 | 9 | 1.9256 | 0.1691 |
1.9692 | 1.9487 | 19 | 1.6557 | 0.2868 |
1.7979 | 2.9744 | 29 | 1.3300 | 0.5368 |
1.5079 | 4.0 | 39 | 1.0482 | 0.6324 |
1.217 | 4.9231 | 48 | 0.9019 | 0.6618 |
0.9536 | 5.9487 | 58 | 0.7687 | 0.6691 |
0.7881 | 6.9744 | 68 | 0.6150 | 0.7721 |
0.68 | 8.0 | 78 | 0.5481 | 0.7868 |
0.5678 | 8.9231 | 87 | 0.5341 | 0.7868 |
0.5169 | 9.9487 | 97 | 0.4800 | 0.7941 |
0.4838 | 10.9744 | 107 | 0.4356 | 0.8235 |
0.4738 | 12.0 | 117 | 0.4573 | 0.8162 |
0.3798 | 12.9231 | 126 | 0.4263 | 0.8088 |
0.3431 | 13.9487 | 136 | 0.4159 | 0.8382 |
0.3282 | 14.9744 | 146 | 0.3787 | 0.8603 |
0.3167 | 16.0 | 156 | 0.4234 | 0.8382 |
0.3186 | 16.9231 | 165 | 0.3853 | 0.8235 |
0.2568 | 17.9487 | 175 | 0.3904 | 0.8456 |
0.2528 | 18.9744 | 185 | 0.4013 | 0.8309 |
0.2661 | 20.0 | 195 | 0.3275 | 0.8824 |
0.2287 | 20.9231 | 204 | 0.3219 | 0.8824 |
0.2465 | 21.9487 | 214 | 0.3410 | 0.8529 |
0.2422 | 22.9744 | 224 | 0.3256 | 0.8603 |
0.222 | 24.0 | 234 | 0.3232 | 0.875 |
0.1917 | 24.9231 | 243 | 0.3307 | 0.8676 |
0.194 | 25.9487 | 253 | 0.3146 | 0.8971 |
0.212 | 26.9744 | 263 | 0.3125 | 0.8897 |
0.1718 | 28.0 | 273 | 0.3015 | 0.9044 |
0.1975 | 28.9231 | 282 | 0.3195 | 0.8824 |
0.1948 | 29.9487 | 292 | 0.3536 | 0.8971 |
0.1809 | 30.9744 | 302 | 0.3105 | 0.875 |
0.1744 | 32.0 | 312 | 0.3032 | 0.8824 |
0.1731 | 32.9231 | 321 | 0.2936 | 0.8971 |
0.1513 | 33.9487 | 331 | 0.2889 | 0.8824 |
0.1527 | 34.9744 | 341 | 0.2875 | 0.8897 |
0.1693 | 36.0 | 351 | 0.2754 | 0.8897 |
0.1743 | 36.9231 | 360 | 0.2875 | 0.8971 |
0.1463 | 37.9487 | 370 | 0.2961 | 0.8971 |
0.1429 | 38.9744 | 380 | 0.2848 | 0.8971 |
0.1483 | 40.0 | 390 | 0.2873 | 0.8897 |
0.1483 | 40.9231 | 399 | 0.2856 | 0.875 |
0.1613 | 41.9487 | 409 | 0.2801 | 0.8971 |
0.1358 | 42.9744 | 419 | 0.2838 | 0.9118 |
0.1453 | 44.0 | 429 | 0.2783 | 0.8971 |
0.1383 | 44.9231 | 438 | 0.2897 | 0.8897 |
0.1655 | 45.9487 | 448 | 0.2847 | 0.9044 |
0.1489 | 46.1538 | 450 | 0.2861 | 0.8897 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1