wdika's picture
Create README.md
266839c verified
---
language:
- en
license: apache-2.0
library_name: atommic
datasets:
- AHEAD
thumbnail: null
tags:
- quantitative-mri-mapping
- qCIRIM
- ATOMMIC
- pytorch
model-index:
- name: QMRI_qCIRIM_AHEAD_gaussian2d_12x
results: []
---
## Model Overview
quantitative Cascades of Independently Recurrent Inference Machines (qCIRIM) for 12x accelerated quantitative MRI mapping of R2*, S0, B0, phi maps on the AHEAD dataset.
## ATOMMIC: Training
To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
```
pip install atommic['all']
```
## How to Use this Model
The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/qMRI/AHEAD/conf).
### Automatically instantiate the model
```base
pretrained: true
checkpoint: https://huggingface.co/wdika/QMRI_qCIRIM_AHEAD_gaussian2d_12x/blob/main/QMRI_qCIRIM_AHEAD_gaussian2d_12x.atommic
mode: test
```
### Usage
You need to download the AHEAD dataset to effectively use this model. Check the [AHEAD](https://github.com/wdika/atommic/blob/main/projects/qMRI/AHEAD/README.md) page for more information.
## Model Architecture
```base
model:
model_name: qCIRIM
use_reconstruction_module: false
quantitative_module_recurrent_layer: IndRNN
quantitative_module_conv_filters:
- 64
- 64
- 4
quantitative_module_conv_kernels:
- 5
- 3
- 3
quantitative_module_conv_dilations:
- 1
- 2
- 1
quantitative_module_conv_bias:
- true
- true
- false
quantitative_module_recurrent_filters:
- 64
- 64
- 0
quantitative_module_recurrent_kernels:
- 1
- 1
- 0
quantitative_module_recurrent_dilations:
- 1
- 1
- 0
quantitative_module_recurrent_bias:
- true
- true
- false
quantitative_module_depth: 2
quantitative_module_time_steps: 8
quantitative_module_conv_dim: 2
quantitative_module_num_cascades: 5
quantitative_module_no_dc: true
quantitative_module_keep_prediction: true
quantitative_module_accumulate_predictions: true
quantitative_module_signal_forward_model_sequence: MEGRE
quantitative_module_dimensionality: 2
quantitative_maps_scaling_factor: 1e-3
quantitative_maps_regularization_factors:
- 150.0
- 150.0
- 1000.0
- 150.0
quantitative_loss:
ssim: 1.0
kspace_quantitative_loss: false
total_quantitative_loss_weight: 1.0 # balance between reconstruction and quantitative loss
quantitative_parameters_regularization_factors:
- R2star: 1.0
- S0: 1.0
- B0: 1.0
- phi: 1.0
```
## Training
```base
optim:
name: adam
lr: 1e-4
betas:
- 0.9
- 0.98
weight_decay: 0.0
sched:
name: InverseSquareRootAnnealing
min_lr: 0.0
last_epoch: -1
warmup_ratio: 0.1
trainer:
strategy: ddp_find_unused_parameters_false
accelerator: gpu
devices: 1
num_nodes: 1
max_epochs: 20
precision: 16-mixed
enable_checkpointing: false
logger: false
log_every_n_steps: 50
check_val_every_n_epoch: -1
max_steps: -1
```
## Performance
To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/qMRI/AHEAD/conf/targets) configuration files.
Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/qmapping.py) script for the qmri task, with --evaluation_type per_slice.
Results
-------
Evaluation against R2*, S0, B0, phi targets
-------------------------------------------
12x: MSE = 0.004702 +/- 0.02991 NMSE = 0.1239 +/- 0.3383 PSNR = 28.28 +/- 11.31 SSIM = 0.8814 +/- 0.1774
## Limitations
This model was trained on very few subjects on the AHEAD dataset. It is not guaranteed to generalize to other datasets.
## References
[1] [ATOMMIC](https://github.com/wdika/atommic)
[2] Alkemade A, Mulder MJ, Groot JM, et al. The Amsterdam Ultra-high field adult lifespan database (AHEAD): A freely available multimodal 7 Tesla submillimeter magnetic resonance imaging database. NeuroImage 2020;221.