wdika commited on
Commit
6286149
1 Parent(s): b675b9a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +124 -0
README.md ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - CC359
8
+ thumbnail: null
9
+ tags:
10
+ - image-reconstruction
11
+ - MoDL
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: REC_MoDL_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ MoDL: Model Based Deep Learning Architecture for Inverse Problems for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf).
38
+
39
+ ### Automatically instantiate the model
40
+
41
+ ```base
42
+ pretrained: true
43
+ checkpoint: https://huggingface.co/wdika/REC_MoDL_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM/blob/main/REC_MoDL_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM.atommic
44
+ mode: test
45
+ ```
46
+
47
+ ### Usage
48
+
49
+ You need to download the CC359 dataset to effectively use this model. Check the [CC359](https://github.com/wdika/atommic/blob/main/projects/REC/CC359/README.md) page for more information.
50
+
51
+
52
+ ## Model Architecture
53
+ ```base
54
+ model:
55
+ model_name: MoDL
56
+ unrolled_iterations: 5
57
+ residual_blocks: 5
58
+ channels: 64
59
+ regularization_factor: 0.1
60
+ penalization_weight: 1.0
61
+ conjugate_gradient_dc: false
62
+ conjugate_gradient_iterations: 1
63
+ dimensionality: 2
64
+ reconstruction_loss:
65
+ l1: 0.1
66
+ ssim: 0.9
67
+ estimate_coil_sensitivity_maps_with_nn: true
68
+ ```
69
+
70
+ ## Training
71
+ ```base
72
+ optim:
73
+ name: adamw
74
+ lr: 1e-4
75
+ betas:
76
+ - 0.9
77
+ - 0.999
78
+ weight_decay: 0.0
79
+ sched:
80
+ name: CosineAnnealing
81
+ min_lr: 0.0
82
+ last_epoch: -1
83
+ warmup_ratio: 0.1
84
+
85
+ trainer:
86
+ strategy: ddp_find_unused_parameters_false
87
+ accelerator: gpu
88
+ devices: 1
89
+ num_nodes: 1
90
+ max_epochs: 20
91
+ precision: 16-mixed
92
+ enable_checkpointing: false
93
+ logger: false
94
+ log_every_n_steps: 50
95
+ check_val_every_n_epoch: -1
96
+ max_steps: -1
97
+ ```
98
+
99
+ ## Performance
100
+
101
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf/targets) configuration files.
102
+
103
+ Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
104
+
105
+ Results
106
+ -------
107
+
108
+ Evaluation against RSS targets
109
+ ------------------------------
110
+ 5x: MSE = 0.001766 +/- 0.001753 NMSE = 0.02701 +/- 0.02698 PSNR = 27.97 +/- 4.196 SSIM = 0.8441 +/- 0.06801
111
+
112
+ 10x: MSE = 0.002893 +/- 0.003142 NMSE = 0.04522 +/- 0.05141 PSNR = 25.89 +/- 4.393 SSIM = 0.7926 +/- 0.08846
113
+
114
+
115
+ ## Limitations
116
+
117
+ This model was trained on the CC359 using a UNet coil sensitivity maps estimation and might differ from the results reported on the challenge leaderboard.
118
+
119
+
120
+ ## References
121
+
122
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
123
+
124
+ [2] Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yiasemis, G., Rodrigues, L., Lopes, A., Pedrini, H., Rittner, L., Dannecker, M., Studenyak, V., Gröger, F., Vyas, D., Faghih-Roohi, S., Kumar Jethi, A., Chandra Raju, J., Sivaprakasam, M., Lasby, M., … Souza, R. (2022). Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.919186