license: apache-2.0 | |
pipeline_tag: feature-extraction | |
library_name: transformers | |
# Set-Encoder: Permutation-Invariant Inter-Passage Attention for Listwise Passage Re-Ranking with Cross-Encoders | |
This model is presented in the paper [Set-Encoder: Permutation-Invariant Inter-Passage Attention for Listwise Passage Re-Ranking with Cross-Encoders](https://huggingface.co/papers/2404.06912). It's a cross-encoder architecture designed for efficient and permutation-invariant passage re-ranking. | |
Code: https://github.com/webis-de/set-encoder | |
We provide the following pre-trained models: | |
| Model Name | TREC DL 19 (BM25) | TREC DL 20 (BM25) | TREC DL 19 (ColBERTv2) | TREC DL 20 (ColBERTv2) | | |
| ------------------------------------------------------------------- | ----------------- | ----------------- | ---------------------- | ---------------------- | | |
| [set-encoder-base](https://huggingface.co/webis/set-encoder-base) | 0.724 | 0.710 | 0.788 | 0.777 | | |
| [set-encoder-large](https://huggingface.co/webis/set-encoder-large) | 0.727 | 0.735 | 0.789 | 0.790 | | |
## Inference | |
We recommend using the `lightning-ir` cli to run inference. The following command can be used to run inference using the `set-encoder-base` model on the TREC DL 19 and TREC DL 20 datasets: | |
```bash | |
lightning-ir re_rank --config configs/re-rank.yaml --config configs/set-encoder-finetuned.yaml --config configs/trec-dl.yaml | |
``` | |
## Fine-Tuning | |
WIP |