Text Generation
Transformers
Safetensors
GGUF
mistral
Merge
mergekit
lazymergekit
weezywitasneezy/OxytocinErosEngineeringF1-7B-slerp
weezywitasneezy/OxytocinErosEngineeringF2-7B-slerp
ChaoticNeutrals/Eris_Remix_7B
Virt-io/Erebus-Holodeck-7B
jeiku/Eros_Prodigadigm_7B
Epiculous/Mika-7B
Eval Results
text-generation-inference
Inference Endpoints
metadata
license: cc-by-nc-4.0
tags:
- merge
- mergekit
- lazymergekit
- weezywitasneezy/OxytocinErosEngineeringF1-7B-slerp
- weezywitasneezy/OxytocinErosEngineeringF2-7B-slerp
- ChaoticNeutrals/Eris_Remix_7B
- Virt-io/Erebus-Holodeck-7B
- jeiku/Eros_Prodigadigm_7B
- Epiculous/Mika-7B
base_model:
- weezywitasneezy/OxytocinErosEngineeringF1-7B-slerp
- weezywitasneezy/OxytocinErosEngineeringF2-7B-slerp
model-index:
- name: OxytocinErosEngineeringFX-7B-slerp
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 66.98
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/OxytocinErosEngineeringFX-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.48
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/OxytocinErosEngineeringFX-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.14
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/OxytocinErosEngineeringFX-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 65.25
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/OxytocinErosEngineeringFX-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.45
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/OxytocinErosEngineeringFX-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 57.39
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/OxytocinErosEngineeringFX-7B-slerp
name: Open LLM Leaderboard
OxytocinErosEngineeringFX-7B-slerp
This is the combination of 4 x Mistral 7b (v0.2?) models as follows:
- ChaoticNeutrals/Eris_Remix_7B
- Virt-io/Erebus-Holodeck-7B
- jeiku/Eros_Prodigadigm_7B
- Epiculous/Mika-7B
OxytocinErosEngineeringFX-7B-slerp is a merge of the following models using LazyMergekit:
- weezywitasneezy/OxytocinErosEngineeringF1-7B-slerp
- weezywitasneezy/OxytocinErosEngineeringF2-7B-slerp
|---------------------------------|----:|
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 70.28 |
AI2 Reasoning Challenge (25-Shot) | 66.98 |
HellaSwag (10-Shot) | 86.48 |
MMLU (5-Shot) | 64.14 |
TruthfulQA (0-shot) | 65.25 |
Winogrande (5-shot) | 81.45 |
GSM8k (5-shot) | 57.39 |
🧩 Configuration
slices:
- sources:
- model: weezywitasneezy/OxytocinErosEngineeringF1-7B-slerp
layer_range: [0, 32]
- model: weezywitasneezy/OxytocinErosEngineeringF2-7B-slerp
layer_range: [0, 32]
merge_method: slerp
base_model: weezywitasneezy/OxytocinErosEngineeringF1-7B-slerp
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "weezywitasneezy/OxytocinErosEngineeringFX-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])