tomato-leaf-disease-classification-resnet50

This model is a fine-tuned version of microsoft/resnet-50 on the wellCh4n/tomato-leaf-disease-image dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0197
  • Accuracy: 0.9956

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6891 1.0 965 1.6572 0.3488
1.1351 2.0 1930 1.1593 0.7126
0.7767 3.0 2895 0.6135 0.8168
0.7963 4.0 3860 0.3818 0.8796
0.547 5.0 4825 0.2581 0.9302
0.5104 6.0 5790 0.2106 0.9438
0.3997 7.0 6755 0.1579 0.9563
0.2527 8.0 7720 0.1292 0.9604
0.3268 9.0 8685 0.1154 0.9659
0.2595 10.0 9650 0.1018 0.9699
0.2269 11.0 10615 0.0869 0.9743
0.2515 12.0 11580 0.0783 0.9747
0.2604 13.0 12545 0.0710 0.9794
0.2583 14.0 13510 0.0704 0.9783
0.2004 15.0 14475 0.0603 0.9824
0.2552 16.0 15440 0.0565 0.9835
0.2192 17.0 16405 0.0553 0.9846
0.3443 18.0 17370 0.0508 0.9831
0.1954 19.0 18335 0.0530 0.9846
0.2685 20.0 19300 0.0430 0.9864
0.1277 21.0 20265 0.0406 0.9864
0.1388 22.0 21230 0.0404 0.9872
0.2379 23.0 22195 0.0399 0.9875
0.1018 24.0 23160 0.0441 0.9879
0.2155 25.0 24125 0.0364 0.9905
0.1699 26.0 25090 0.0398 0.9875
0.2772 27.0 26055 0.0364 0.9872
0.1669 28.0 27020 0.0369 0.9894
0.0867 29.0 27985 0.0339 0.9901
0.1314 30.0 28950 0.0322 0.9905
0.082 31.0 29915 0.0362 0.9879
0.0393 32.0 30880 0.0332 0.9908
0.0812 33.0 31845 0.0329 0.9905
0.2634 34.0 32810 0.0333 0.9897
0.1581 35.0 33775 0.0337 0.9901
0.168 36.0 34740 0.0298 0.9890
0.0653 37.0 35705 0.0311 0.9905
0.0998 38.0 36670 0.0326 0.9901
0.0947 39.0 37635 0.0288 0.9919
0.1126 40.0 38600 0.0272 0.9916
0.1319 41.0 39565 0.0272 0.9919
0.0446 42.0 40530 0.0283 0.9916
0.2453 43.0 41495 0.0281 0.9919
0.0708 44.0 42460 0.0263 0.9923
0.0441 45.0 43425 0.0262 0.9916
0.0936 46.0 44390 0.0252 0.9919
0.1565 47.0 45355 0.0284 0.9923
0.0404 48.0 46320 0.0263 0.9930
0.0357 49.0 47285 0.0240 0.9930
0.0971 50.0 48250 0.0285 0.9916
0.0582 51.0 49215 0.0251 0.9923
0.048 52.0 50180 0.0257 0.9919
0.1218 53.0 51145 0.0252 0.9930
0.0576 54.0 52110 0.0227 0.9930
0.0723 55.0 53075 0.0227 0.9930
0.1347 56.0 54040 0.0242 0.9941
0.1684 57.0 55005 0.0255 0.9927
0.0525 58.0 55970 0.0250 0.9938
0.1031 59.0 56935 0.0265 0.9923
0.0768 60.0 57900 0.0244 0.9941
0.0416 61.0 58865 0.0207 0.9934
0.1783 62.0 59830 0.0237 0.9941
0.1253 63.0 60795 0.0269 0.9912
0.0448 64.0 61760 0.0236 0.9941
0.0967 65.0 62725 0.0230 0.9934
0.0486 66.0 63690 0.0229 0.9941
0.0442 67.0 64655 0.0256 0.9934
0.0526 68.0 65620 0.0210 0.9945
0.0949 69.0 66585 0.0250 0.9938
0.0674 70.0 67550 0.0228 0.9938
0.1554 71.0 68515 0.0240 0.9941
0.0598 72.0 69480 0.0233 0.9945
0.0632 73.0 70445 0.0218 0.9949
0.0951 74.0 71410 0.0234 0.9945
0.1634 75.0 72375 0.0245 0.9945
0.2039 76.0 73340 0.0222 0.9938
0.0741 77.0 74305 0.0226 0.9949
0.0923 78.0 75270 0.0218 0.9949
0.0351 79.0 76235 0.0230 0.9945
0.1234 80.0 77200 0.0244 0.9934
0.0659 81.0 78165 0.0232 0.9945
0.0393 82.0 79130 0.0210 0.9949
0.053 83.0 80095 0.0205 0.9945
0.0575 84.0 81060 0.0210 0.9945
0.0651 85.0 82025 0.0198 0.9949
0.0875 86.0 82990 0.0210 0.9945
0.1006 87.0 83955 0.0214 0.9949
0.0466 88.0 84920 0.0211 0.9941
0.088 89.0 85885 0.0233 0.9923
0.1162 90.0 86850 0.0197 0.9956
0.0641 91.0 87815 0.0213 0.9949
0.0867 92.0 88780 0.0203 0.9952
0.0305 93.0 89745 0.0212 0.9941
0.1009 94.0 90710 0.0200 0.9956
0.084 95.0 91675 0.0200 0.9960
0.0409 96.0 92640 0.0213 0.9949
0.107 97.0 93605 0.0210 0.9934
0.0558 98.0 94570 0.0206 0.9952
0.0644 99.0 95535 0.0219 0.9949
0.0617 100.0 96500 0.0205 0.9941

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.2.2+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
16
Safetensors
Model size
23.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for wellCh4n/tomato-leaf-disease-classification-resnet50

Finetuned
(134)
this model