whitefoxredhell's picture
Update README.md
b6e2a51
---
license: mit
language:
- fr
- zh
- fa
- ky
- ru
- lt
- uz
- en
- pt
- bg
- th
- pl
- ur
- sw
- tr
- es
- ar
- it
- hi
- de
- el
- nl
- vi
- ja
pipeline_tag: text-classification
tags:
- pytorch
- mt0
---
# language identification mt0
This model is a fine-tuned version of encoder from [bigscience/mt0-small](https://huggingface.co/bigscience/mt0-small) on the [Language Identification](https://huggingface.co/datasets/papluca/language-identification#additional-information) dataset as well as some private data.
## Limitations
Currently, it supports the following 20 languages:
arabic (ar), bulgarian (bg), german (de), modern greek (el), english (en), spanish (es), french (fr), hindi (hi), italian (it), kyrgyz (ky), uzbek (uz), persian (fa), lithuanian (lt), japanese (ja), dutch (nl), polish (pl), portuguese (pt), russian (ru), swahili (sw), thai (th), turkish (tr), urdu (ur), vietnamese (vi), and chinese (zh)
## Inference
First you will need to have this library installed
```python
pip install bert-for-sequence classification
```
```python
from bert_clf import EncoderCLF
import torch
model = EncoderCLF("whitefoxredhell/language_identification")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
model = model.eval()
text = "London is the capital of Great Britain"
model.predict(text)
# 'en'
model.predict_proba(text)
# {
# 'fr': 3.022890814463608e-05,
# 'zh': 2.328997834410984e-05,
# 'fa': 5.344639430404641e-05,
# 'ky': 3.5296812711749226e-05,
# 'ru': 2.3277720174519345e-05,
# 'lt': 0.00021786204888485372,
# 'uz': 3.461417873040773e-05,
# 'en': 0.999232292175293,
# 'pt': 1.2590448022820055e-05,
# 'bg': 1.5775613064761274e-05,
# 'th': 9.429674719285686e-06,
# 'pl': 2.4624938305350952e-05,
# 'ur': 3.982995986007154e-05,
# 'sw': 4.8921840061666444e-05,
# 'tr': 2.6844283638638444e-05,
# 'es': 2.325668538105674e-05,
# 'ar': 2.4103366740746424e-05,
# 'it': 1.8611381165101193e-05,
# 'hi': 1.4575023669749498e-05,
# 'de': 2.210299498983659e-05,
# 'el': 1.3880739061278291e-05,
# 'nl': 2.767637124634348e-05,
# 'vi': 1.3878144272894133e-05,
# 'ja': 1.3629408385895658e-05
# }
```