metadata
base_model:
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
tags:
- merge
- mergekit
- lazymergekit
- Qwen/Qwen2.5-1.5B-Instruct
Qwen2.5-2B-Instruct
Qwen2.5-2B-Instruct is a merge of the following models using LazyMergekit:
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
🧩 Configuration
dtype: bfloat16
merge_method: passthrough
slices:
- sources:
- layer_range: [0, 2]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [1, 3]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [2, 4]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [3, 5]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [4, 6]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [5, 7]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [6, 8]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [7, 9]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [8, 10]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [9, 11]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [10, 12]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [11, 13]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [12, 14]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [13, 15]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [14, 16]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [16, 18]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [17, 19]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [18, 20]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [19, 21]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [20, 22]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [21, 23]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [22, 24]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [23, 25]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [24, 26]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [25, 27]
model: Qwen/Qwen2.5-1.5B-Instruct
- sources:
- layer_range: [26, 28]
model: Qwen/Qwen2.5-1.5B-Instruct
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "win10/Qwen2.5-2B-Instruct"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])