Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -19.64 +/- 4.50
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb6a5da491e08d0b14c2ead206188dcebb773c7cc4235e6063ffb5230547c191
|
3 |
+
size 108038
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -24,19 +24,19 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
-
"learning_rate": 0.
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,7 +56,7 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
@@ -64,7 +64,7 @@
|
|
64 |
},
|
65 |
"_n_updates": 50000,
|
66 |
"n_steps": 5,
|
67 |
-
"gamma": 0.
|
68 |
"gae_lambda": 1.0,
|
69 |
"ent_coef": 0.0,
|
70 |
"vf_coef": 0.5,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fef45b98ca0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fef45b89700>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1682897232276797038,
|
28 |
+
"learning_rate": 0.001,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHjCHPtjDJT5R4i0/HjCHPtjDJT5R4i0/HjCHPtjDJT5R4i0/HjCHPtjDJT5R4i0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASTqkvlDW0z/hy6+/7jKvPxb7kT8QLIM+aPLbPbQKmb/spug+mVfdvlkF2T+235S9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAeMIc+2MMlPlHiLT+LPTs8kSe8PKWPCz0eMIc+2MMlPlHiLT+LPTs8kSe8PKWPCz0eMIc+2MMlPlHiLT+LPTs8kSe8PKWPCz0eMIc+2MMlPlHiLT+LPTs8kSe8PKWPCz2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.26403898 0.1618799 0.67923456]\n [0.26403898 0.1618799 0.67923456]\n [0.26403898 0.1618799 0.67923456]\n [0.26403898 0.1618799 0.67923456]]",
|
38 |
+
"desired_goal": "[[-0.32075718 1.6549778 -1.3734094 ]\n [ 1.3687418 1.140475 0.25619555]\n [ 0.10739595 -1.1956391 0.4543985 ]\n [-0.43230894 1.6954757 -0.07269232]]",
|
39 |
+
"observation": "[[0.26403898 0.1618799 0.67923456 0.01142825 0.02296809 0.03407254]\n [0.26403898 0.1618799 0.67923456 0.01142825 0.02296809 0.03407254]\n [0.26403898 0.1618799 0.67923456 0.01142825 0.02296809 0.03407254]\n [0.26403898 0.1618799 0.67923456 0.01142825 0.02296809 0.03407254]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4JvqvekfFb7Ac5g+JX4FvpLi4j0FB5Q+QUEKvsWJt71P8w0++MJ1PSmELj3vq3E9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.11455512 -0.14562954 0.2977581 ]\n [-0.13036402 0.11078371 0.28911605]\n [-0.13501455 -0.08961824 0.13862346]\n [ 0.06000039 0.04260651 0.05900186]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITBjNyvb5IsCUhpRSlIwBbJRLMowBdJRHQKUTlyaNMoN1fZQoaAZoCWgPQwglJNI2/kgxwJSGlFKUaBVLMmgWR0ClE0Nke6qbdX2UKGgGaAloD0MIAg6hSs3WJ8CUhpRSlGgVSzJoFkdApRLuS+xnnXV9lChoBmgJaA9DCFGC/kKPACjAlIaUUpRoFUsyaBZHQKUSkOzY2891fZQoaAZoCWgPQwgSvCGNCrgywJSGlFKUaBVLMmgWR0ClFLXbM5fddX2UKGgGaAloD0MICyk/qfYxK8CUhpRSlGgVSzJoFkdApRRhGe+VT3V9lChoBmgJaA9DCNbFbTSAyzPAlIaUUpRoFUsyaBZHQKUUCmu1WsB1fZQoaAZoCWgPQwjn4m97gpwlwJSGlFKUaBVLMmgWR0ClE6x6OYICdX2UKGgGaAloD0MI1UDzOXfDMcCUhpRSlGgVSzJoFkdApRWkkOZssXV9lChoBmgJaA9DCBRa1v1jASnAlIaUUpRoFUsyaBZHQKUVUQMhHLB1fZQoaAZoCWgPQwjaOc0C7eI0wJSGlFKUaBVLMmgWR0ClFPoZ62ORdX2UKGgGaAloD0MIqz/CMGC5JMCUhpRSlGgVSzJoFkdApRScNDtw73V9lChoBmgJaA9DCF3cRgN4+yTAlIaUUpRoFUsyaBZHQKUWisvIwM91fZQoaAZoCWgPQwjFHtrHCoY0wJSGlFKUaBVLMmgWR0ClFjY95hScdX2UKGgGaAloD0MItObHX1pEIcCUhpRSlGgVSzJoFkdApRXfpOerdXV9lChoBmgJaA9DCMEcPX5v8zLAlIaUUpRoFUsyaBZHQKUVgauOjqR1fZQoaAZoCWgPQwj5SEp6GGIhwJSGlFKUaBVLMmgWR0ClF3UGu9vkdX2UKGgGaAloD0MIh22LMhuUIcCUhpRSlGgVSzJoFkdApRcg2Q4jr3V9lChoBmgJaA9DCE5eZAJ+9SbAlIaUUpRoFUsyaBZHQKUWyrlNlAh1fZQoaAZoCWgPQwjIDFTGv7s2wJSGlFKUaBVLMmgWR0ClFm0TcqOMdX2UKGgGaAloD0MIM4rlllbDNcCUhpRSlGgVSzJoFkdApRhxeHBUJnV9lChoBmgJaA9DCOyIQzaQdi3AlIaUUpRoFUsyaBZHQKUYHK3/gix1fZQoaAZoCWgPQwjZQSWuY5QhwJSGlFKUaBVLMmgWR0ClF8XWe6I4dX2UKGgGaAloD0MICp3X2CXaOsCUhpRSlGgVSzJoFkdApRdoESuhbnV9lChoBmgJaA9DCGNH41C/CzPAlIaUUpRoFUsyaBZHQKUZTfCQ9zR1fZQoaAZoCWgPQwiz6nO1FSsswJSGlFKUaBVLMmgWR0ClGPk3juKGdX2UKGgGaAloD0MIuVUQA11TI8CUhpRSlGgVSzJoFkdApRiiYb83uXV9lChoBmgJaA9DCJIkCFdAcS7AlIaUUpRoFUsyaBZHQKUYRHlOoHd1fZQoaAZoCWgPQwiIad/cX/0jwJSGlFKUaBVLMmgWR0ClGjxGMGX5dX2UKGgGaAloD0MIADj27LmoNMCUhpRSlGgVSzJoFkdApRnnrrxAjnV9lChoBmgJaA9DCI4+5gMCVSDAlIaUUpRoFUsyaBZHQKUZkNaQmu11fZQoaAZoCWgPQwgSoKaWraE4wJSGlFKUaBVLMmgWR0ClGTMDfWMCdX2UKGgGaAloD0MIntMs0O50MMCUhpRSlGgVSzJoFkdApRsevhZQpHV9lChoBmgJaA9DCNE8gEV+TTTAlIaUUpRoFUsyaBZHQKUayhTwUg11fZQoaAZoCWgPQwgHB3sTQ3owwJSGlFKUaBVLMmgWR0ClGnNapxWDdX2UKGgGaAloD0MIvokhOZkIGcCUhpRSlGgVSzJoFkdApRoVXiiqQ3V9lChoBmgJaA9DCMNmgAuyNS3AlIaUUpRoFUsyaBZHQKUcDdY4hll1fZQoaAZoCWgPQwin5nKDoZ4kwJSGlFKUaBVLMmgWR0ClG7kO7QLNdX2UKGgGaAloD0MIJGJKJNHjLcCUhpRSlGgVSzJoFkdApRtiT+vQnnV9lChoBmgJaA9DCDJ2wktwwjDAlIaUUpRoFUsyaBZHQKUbBEvTPSl1fZQoaAZoCWgPQwiOlC2SdrstwJSGlFKUaBVLMmgWR0ClHOu2Zy+6dX2UKGgGaAloD0MI6WD9n8PoOsCUhpRSlGgVSzJoFkdApRyXH1e0HHV9lChoBmgJaA9DCBPwayQJmjfAlIaUUpRoFUsyaBZHQKUcQFIuoP11fZQoaAZoCWgPQwgPQkC+hOIvwJSGlFKUaBVLMmgWR0ClG+JyZKFqdX2UKGgGaAloD0MI7E/icyd4IsCUhpRSlGgVSzJoFkdApR3Y93bEgnV9lChoBmgJaA9DCPcA3ZczcyfAlIaUUpRoFUsyaBZHQKUdhEYO2Ap1fZQoaAZoCWgPQwjSjEXT2Y0wwJSGlFKUaBVLMmgWR0ClHS1stTUBdX2UKGgGaAloD0MIw9Zs5SUHMMCUhpRSlGgVSzJoFkdApRzPoC+10HV9lChoBmgJaA9DCAq7KHrgMyXAlIaUUpRoFUsyaBZHQKUeugRsdkt1fZQoaAZoCWgPQwgKZkzBGk8+wJSGlFKUaBVLMmgWR0ClHmVn27FsdX2UKGgGaAloD0MIlq/L8J+2IcCUhpRSlGgVSzJoFkdApR4OfNA1N3V9lChoBmgJaA9DCICCixU1UCPAlIaUUpRoFUsyaBZHQKUdsWYWtU51fZQoaAZoCWgPQwi++njou88ywJSGlFKUaBVLMmgWR0ClH6TVUdaMdX2UKGgGaAloD0MIseB+wAMLIsCUhpRSlGgVSzJoFkdApR9QCGN70HV9lChoBmgJaA9DCKG7JM6K+CPAlIaUUpRoFUsyaBZHQKUe+RoRIz51fZQoaAZoCWgPQwjtgVZgyFItwJSGlFKUaBVLMmgWR0ClHptTcZccdX2UKGgGaAloD0MIPGagMv71J8CUhpRSlGgVSzJoFkdApSCGseXAunV9lChoBmgJaA9DCK1POSaLcyrAlIaUUpRoFUsyaBZHQKUgMiPhhph1fZQoaAZoCWgPQwgoSddMvh0wwJSGlFKUaBVLMmgWR0ClH9tJFspHdX2UKGgGaAloD0MIZLDiVGu9MMCUhpRSlGgVSzJoFkdApR99U0elsXV9lChoBmgJaA9DCNCzWfW58ivAlIaUUpRoFUsyaBZHQKUhbcPe54J1fZQoaAZoCWgPQwjDLLRzmmk8wJSGlFKUaBVLMmgWR0ClIRk078vVdX2UKGgGaAloD0MIzEHQ0aqGJMCUhpRSlGgVSzJoFkdApSDCWJJoTXV9lChoBmgJaA9DCE+UhETari7AlIaUUpRoFUsyaBZHQKUgZJxNqQB1fZQoaAZoCWgPQwgf8wGBzhQkwJSGlFKUaBVLMmgWR0ClIlMN+b3HdX2UKGgGaAloD0MImn0eozxTJMCUhpRSlGgVSzJoFkdApSH+RT0g83V9lChoBmgJaA9DCGHj+nd9Xi3AlIaUUpRoFUsyaBZHQKUhp1Hvtt11fZQoaAZoCWgPQwgnEkw1s642wJSGlFKUaBVLMmgWR0ClIUlw97ngdX2UKGgGaAloD0MI1v85zJebOsCUhpRSlGgVSzJoFkdApSMv7FbV0HV9lChoBmgJaA9DCIqtoGmJBTDAlIaUUpRoFUsyaBZHQKUi2w7kn1F1fZQoaAZoCWgPQwhO7QxTW5ohwJSGlFKUaBVLMmgWR0ClIoQtjCpFdX2UKGgGaAloD0MIK4iBrn2JK8CUhpRSlGgVSzJoFkdApSImR/3Fk3V9lChoBmgJaA9DCEimQ6fnyTLAlIaUUpRoFUsyaBZHQKUkCTX8O091fZQoaAZoCWgPQwhkWTDxR2kmwJSGlFKUaBVLMmgWR0ClI7SDZlFudX2UKGgGaAloD0MI5nYv98kJI8CUhpRSlGgVSzJoFkdApSNduR9w33V9lChoBmgJaA9DCJoiwOldfB/AlIaUUpRoFUsyaBZHQKUi/72tdRl1fZQoaAZoCWgPQwh/iA0WTlojwJSGlFKUaBVLMmgWR0ClJOsERraedX2UKGgGaAloD0MI+FEN+z09M8CUhpRSlGgVSzJoFkdApSSWYYzi0nV9lChoBmgJaA9DCBJsXP+uPzbAlIaUUpRoFUsyaBZHQKUkP4cm0E51fZQoaAZoCWgPQwiF6XsNwXEqwJSGlFKUaBVLMmgWR0ClI+F2eQMhdX2UKGgGaAloD0MIZD+LpUiiNcCUhpRSlGgVSzJoFkdApSXToIOYpnV9lChoBmgJaA9DCPmE7LyN/TXAlIaUUpRoFUsyaBZHQKUlfvUjLSx1fZQoaAZoCWgPQwhSCyWTUx80wJSGlFKUaBVLMmgWR0ClJSgpSaVldX2UKGgGaAloD0MI3WETmbkQIcCUhpRSlGgVSzJoFkdApSTKMtK7I3V9lChoBmgJaA9DCBO6S+KsuDrAlIaUUpRoFUsyaBZHQKUmw3solUp1fZQoaAZoCWgPQwiOAkTBjJ00wJSGlFKUaBVLMmgWR0ClJm7K7qY7dX2UKGgGaAloD0MIyLPLtz50McCUhpRSlGgVSzJoFkdApSYX8XN1Q3V9lChoBmgJaA9DCB2s/3OYxzbAlIaUUpRoFUsyaBZHQKUlujHn2Zl1fZQoaAZoCWgPQwiRDaSLTasYwJSGlFKUaBVLMmgWR0ClJ6EH+qBFdX2UKGgGaAloD0MIH2rbMAqGNsCUhpRSlGgVSzJoFkdApSdMfgaWHHV9lChoBmgJaA9DCPiqlQm/3DbAlIaUUpRoFUsyaBZHQKUm9bgTAWV1fZQoaAZoCWgPQwjZzvdT450jwJSGlFKUaBVLMmgWR0ClJpeo1k1/dX2UKGgGaAloD0MIct2U8lpBKMCUhpRSlGgVSzJoFkdApSjaNZNfxHV9lChoBmgJaA9DCM0GmWTkdDTAlIaUUpRoFUsyaBZHQKUohnoPkJd1fZQoaAZoCWgPQwgXEcXkDfAzwJSGlFKUaBVLMmgWR0ClKDClrM1TdX2UKGgGaAloD0MIstXllIDsNcCUhpRSlGgVSzJoFkdApSfTpeNT+HV9lChoBmgJaA9DCN+KxAQ11DTAlIaUUpRoFUsyaBZHQKUqS+aBqbl1fZQoaAZoCWgPQwjqPZXTnoo3wJSGlFKUaBVLMmgWR0ClKffpljEvdX2UKGgGaAloD0MIVKuvrgr0IsCUhpRSlGgVSzJoFkdApSmi6reZX3V9lChoBmgJaA9DCB7dCIuKUDXAlIaUUpRoFUsyaBZHQKUpReN1hb51ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
|
|
64 |
},
|
65 |
"_n_updates": 50000,
|
66 |
"n_steps": 5,
|
67 |
+
"gamma": 0.95,
|
68 |
"gae_lambda": 1.0,
|
69 |
"ent_coef": 0.0,
|
70 |
"vf_coef": 0.5,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab862b136ad7af378175b9a883bb752f781543a9e5a5f92e9d302854ac62476b
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ff8629b6c87f40b4cd05963bec28c0df03c23007de42cc8966ad24d320f0362
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9e17af3c70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9e17af8ac0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682869577067730529, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhN3MPkS5pryw/xQ/hN3MPkS5pryw/xQ/hN3MPkS5pryw/xQ/hN3MPkS5pryw/xQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJOKEPoJYH7/AyHO/aD2AP09TIr9tCWe/DBsQv3L8Rr8mt6U/012eP9TRoD6gJVM/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACE3cw+RLmmvLD/FD/J/GU8/lU0uuMVhjuE3cw+RLmmvLD/FD/J/GU8/lU0uuMVhjuE3cw+RLmmvLD/FD/J/GU8/lU0uuMVhjuE3cw+RLmmvLD/FD/J/GU8/lU0uuMVhjuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40012753 -0.02035201 0.5820265 ]\n [ 0.40012753 -0.02035201 0.5820265 ]\n [ 0.40012753 -0.02035201 0.5820265 ]\n [ 0.40012753 -0.02035201 0.5820265 ]]", "desired_goal": "[[ 0.25953782 -0.6224443 -0.95228195]\n [ 1.001874 -0.6340837 -0.9024876 ]\n [-0.5629127 -0.7772895 1.2946517 ]\n [ 1.2372383 0.31410086 0.82479286]]", "observation": "[[ 0.40012753 -0.02035201 0.5820265 0.01403732 -0.00068793 0.00409196]\n [ 0.40012753 -0.02035201 0.5820265 0.01403732 -0.00068793 0.00409196]\n [ 0.40012753 -0.02035201 0.5820265 0.01403732 -0.00068793 0.00409196]\n [ 0.40012753 -0.02035201 0.5820265 0.01403732 -0.00068793 0.00409196]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA17cKPonrFD04cdY8d/D6vIDQu73R2ZQ+3TNnPf+Aej3m02w+XVRwvZ2SJTwa2lM9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13546692 0.03635744 0.02617703]\n [-0.03063224 -0.09170628 0.2907243 ]\n [ 0.05644595 0.06115818 0.23127708]\n [-0.05867421 0.01010576 0.05172167]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfsfw2M9yEMCUhpRSlIwBbJRLMowBdJRHQKZZ7fG+9J11fZQoaAZoCWgPQwiBCdy6m8cYwJSGlFKUaBVLMmgWR0CmWY4KpkwwdX2UKGgGaAloD0MIxw2/m27ZAsCUhpRSlGgVSzJoFkdAplkw/keZHHV9lChoBmgJaA9DCH5v05/9KAXAlIaUUpRoFUsyaBZHQKZY0uM+/xl1fZQoaAZoCWgPQwi95erHJtkUwJSGlFKUaBVLMmgWR0CmWx71qWTpdX2UKGgGaAloD0MIn3JMFvcf9L+UhpRSlGgVSzJoFkdAplq+4EwFknV9lChoBmgJaA9DCAIrhxbZHhbAlIaUUpRoFUsyaBZHQKZaYoVmBe51fZQoaAZoCWgPQwh9PsqIC5ARwJSGlFKUaBVLMmgWR0CmWgSBkI5YdX2UKGgGaAloD0MIPdLgtrawAcCUhpRSlGgVSzJoFkdAplw+f7Jnx3V9lChoBmgJaA9DCBrAWyBBkQLAlIaUUpRoFUsyaBZHQKZb3qi48U51fZQoaAZoCWgPQwj8HYoCfaIEwJSGlFKUaBVLMmgWR0CmW4GozeoDdX2UKGgGaAloD0MIRgvQtprFEMCUhpRSlGgVSzJoFkdAplsjm0VrRHV9lChoBmgJaA9DCL/udOeJZwDAlIaUUpRoFUsyaBZHQKZdVRplBhR1fZQoaAZoCWgPQwiDiqpf6ZwMwJSGlFKUaBVLMmgWR0CmXPUahpQDdX2UKGgGaAloD0MIchjMXyGzC8CUhpRSlGgVSzJoFkdAplyX5xiobXV9lChoBmgJaA9DCDL/6Js0zQjAlIaUUpRoFUsyaBZHQKZcOeTV2A51fZQoaAZoCWgPQwgjoS3nUjwQwJSGlFKUaBVLMmgWR0CmXmWq94/vdX2UKGgGaAloD0MIrDlAMEcP7b+UhpRSlGgVSzJoFkdApl4Fm8M/hXV9lChoBmgJaA9DCJ6ayw2GevC/lIaUUpRoFUsyaBZHQKZdqGr0aqF1fZQoaAZoCWgPQwiDTDJyFjYOwJSGlFKUaBVLMmgWR0CmXUp2MbWFdX2UKGgGaAloD0MIgh3/BYLgEsCUhpRSlGgVSzJoFkdApl+fQY1pCnV9lChoBmgJaA9DCOrouBrZtQfAlIaUUpRoFUsyaBZHQKZfP1bqyGB1fZQoaAZoCWgPQwhlVu9wO/T4v5SGlFKUaBVLMmgWR0CmXuI3BHkMdX2UKGgGaAloD0MI0SSxpNxdAMCUhpRSlGgVSzJoFkdApl6EHpr1unV9lChoBmgJaA9DCBFUjV4N0AHAlIaUUpRoFUsyaBZHQKZgsW0qpcZ1fZQoaAZoCWgPQwg5e2e0VWkBwJSGlFKUaBVLMmgWR0CmYFF10T11dX2UKGgGaAloD0MIKAtfX+uSE8CUhpRSlGgVSzJoFkdApl/0XizcAXV9lChoBmgJaA9DCKGfqdctUhDAlIaUUpRoFUsyaBZHQKZfln6l+E11fZQoaAZoCWgPQwh3ZKw2/y8BwJSGlFKUaBVLMmgWR0CmYceRHPNWdX2UKGgGaAloD0MISDfCoiKuGMCUhpRSlGgVSzJoFkdApmFnh4t6HHV9lChoBmgJaA9DCLWIKCZvsBTAlIaUUpRoFUsyaBZHQKZhCofCAMF1fZQoaAZoCWgPQwggJ0wYzYr0v5SGlFKUaBVLMmgWR0CmYKx/NJOGdX2UKGgGaAloD0MIrprniHyX9L+UhpRSlGgVSzJoFkdApmL0BhhH9XV9lChoBmgJaA9DCODzwwjhEfG/lIaUUpRoFUsyaBZHQKZilChvitJ1fZQoaAZoCWgPQwjoEaPnFioTwJSGlFKUaBVLMmgWR0CmYjcmKIi1dX2UKGgGaAloD0MIn+bkRSag/r+UhpRSlGgVSzJoFkdApmHZQHiWFHV9lChoBmgJaA9DCJ4JTRJLagnAlIaUUpRoFUsyaBZHQKZkKXAuZkV1fZQoaAZoCWgPQwjerSzRWQYdwJSGlFKUaBVLMmgWR0CmY8oz3yqddX2UKGgGaAloD0MITkUqjC1kA8CUhpRSlGgVSzJoFkdApmNtG3F1jnV9lChoBmgJaA9DCDjXMEPjqRPAlIaUUpRoFUsyaBZHQKZjDwXqJMx1fZQoaAZoCWgPQwgtlExO7awAwJSGlFKUaBVLMmgWR0CmZcxkd3jddX2UKGgGaAloD0MIJQfsavLUDcCUhpRSlGgVSzJoFkdApmVtGPPszHV9lChoBmgJaA9DCII4DycwLRLAlIaUUpRoFUsyaBZHQKZlENhE0BR1fZQoaAZoCWgPQwjXw5eJIiQDwJSGlFKUaBVLMmgWR0CmZLNz8xbjdX2UKGgGaAloD0MIgSIWMexw8r+UhpRSlGgVSzJoFkdApmeHJ3gUDnV9lChoBmgJaA9DCOUMxR1v8g/AlIaUUpRoFUsyaBZHQKZnKE3bVSZ1fZQoaAZoCWgPQwiFzJVBtUEAwJSGlFKUaBVLMmgWR0CmZswfhddFdX2UKGgGaAloD0MIv9U6cTkOFsCUhpRSlGgVSzJoFkdApmZvFDOTq3V9lChoBmgJaA9DCEH1DyIZsgLAlIaUUpRoFUsyaBZHQKZpXSHdoFp1fZQoaAZoCWgPQwhZbJOKxvoBwJSGlFKUaBVLMmgWR0CmaP4xcmjTdX2UKGgGaAloD0MIqdvZVx4EEsCUhpRSlGgVSzJoFkdApmih9E1EVnV9lChoBmgJaA9DCGE3bFuUeRPAlIaUUpRoFUsyaBZHQKZoRS5y2hJ1fZQoaAZoCWgPQwjGNNO9Tir9v5SGlFKUaBVLMmgWR0Cmay50r9VFdX2UKGgGaAloD0MIPKWD9X+O/b+UhpRSlGgVSzJoFkdApmrPYe1a4nV9lChoBmgJaA9DCJFkVu9we/m/lIaUUpRoFUsyaBZHQKZqc0ALiMp1fZQoaAZoCWgPQwgN38K68R4QwJSGlFKUaBVLMmgWR0CmahZc9nscdX2UKGgGaAloD0MI2o6pu7KbEsCUhpRSlGgVSzJoFkdApm0eNrCWNXV9lChoBmgJaA9DCC+i7Zi66xLAlIaUUpRoFUsyaBZHQKZsvy8zyjJ1fZQoaAZoCWgPQwg/V1uxv4wJwJSGlFKUaBVLMmgWR0CmbGMOXmeUdX2UKGgGaAloD0MIA3rhzoUxCcCUhpRSlGgVSzJoFkdApmwF9ORDC3V9lChoBmgJaA9DCHalZaTe8wrAlIaUUpRoFUsyaBZHQKZuSTKT0QN1fZQoaAZoCWgPQwiO5sjKL4P7v5SGlFKUaBVLMmgWR0CmbelGoaUBdX2UKGgGaAloD0MISino9pLmDMCUhpRSlGgVSzJoFkdApm2MT101ZXV9lChoBmgJaA9DCC0ly0kovQnAlIaUUpRoFUsyaBZHQKZtLi2Dxsl1fZQoaAZoCWgPQwiPjquRXQkEwJSGlFKUaBVLMmgWR0Cmb1PBrN4adX2UKGgGaAloD0MI6iKFsvAlFMCUhpRSlGgVSzJoFkdApm7z2SMcZXV9lChoBmgJaA9DCCAIkKFjxwTAlIaUUpRoFUsyaBZHQKZulnVXmvJ1fZQoaAZoCWgPQwjuX1lpUsr9v5SGlFKUaBVLMmgWR0CmbjgOz6acdX2UKGgGaAloD0MIP+YDAp2JAsCUhpRSlGgVSzJoFkdApnBWnCO3lXV9lChoBmgJaA9DCDFhNCvb5wXAlIaUUpRoFUsyaBZHQKZv9pUPxx11fZQoaAZoCWgPQwgWaHdIMaABwJSGlFKUaBVLMmgWR0Cmb5luWKMvdX2UKGgGaAloD0MIRUYHJGFfDsCUhpRSlGgVSzJoFkdApm87bvgFYHV9lChoBmgJaA9DCKOQZFbvcA/AlIaUUpRoFUsyaBZHQKZxXnkDIR11fZQoaAZoCWgPQwjZ6Qd1kWINwJSGlFKUaBVLMmgWR0CmcP6GYa5xdX2UKGgGaAloD0MIc4QM5NmlCcCUhpRSlGgVSzJoFkdApnChXyRSxnV9lChoBmgJaA9DCJXzxd6LrwHAlIaUUpRoFUsyaBZHQKZwQzdDYyx1fZQoaAZoCWgPQwhjey3ovREKwJSGlFKUaBVLMmgWR0CmcmE1/DtPdX2UKGgGaAloD0MIFoTyPo7WEsCUhpRSlGgVSzJoFkdApnIBCIDYAnV9lChoBmgJaA9DCKWFyypspgHAlIaUUpRoFUsyaBZHQKZxo6hg3Lp1fZQoaAZoCWgPQwji578Hr00bwJSGlFKUaBVLMmgWR0CmcUWqT8pDdX2UKGgGaAloD0MI8Gq5MxPMBMCUhpRSlGgVSzJoFkdApnNYvHtF8XV9lChoBmgJaA9DCKVMamgDwBbAlIaUUpRoFUsyaBZHQKZy+M4LkS51fZQoaAZoCWgPQwhVhQZi2WwXwJSGlFKUaBVLMmgWR0CmcpuVopQUdX2UKGgGaAloD0MI0egOYmdqFMCUhpRSlGgVSzJoFkdApnI9RR/EwXV9lChoBmgJaA9DCDj5LTpZOhnAlIaUUpRoFUsyaBZHQKZ0W03wTdt1fZQoaAZoCWgPQwjs3R/vVUsEwJSGlFKUaBVLMmgWR0Cmc/sDwH7hdX2UKGgGaAloD0MIV3bB4JrLFsCUhpRSlGgVSzJoFkdApnOd7MPjGXV9lChoBmgJaA9DCFBUNqypLATAlIaUUpRoFUsyaBZHQKZzP6be/Hp1fZQoaAZoCWgPQwgHDJI+rQIPwJSGlFKUaBVLMmgWR0CmdVWJrLyMdX2UKGgGaAloD0MIJ4QOuoQjCsCUhpRSlGgVSzJoFkdApnT1f7aZhXV9lChoBmgJaA9DCKxVuyakFQbAlIaUUpRoFUsyaBZHQKZ0mEmICU51fZQoaAZoCWgPQwj84lKVtjgMwJSGlFKUaBVLMmgWR0CmdDpEYwZgdX2UKGgGaAloD0MIvqWcL/Y+A8CUhpRSlGgVSzJoFkdApnZFTzd1uHV9lChoBmgJaA9DCA8J3/sbBBLAlIaUUpRoFUsyaBZHQKZ15VDKHO91fZQoaAZoCWgPQwh0eXO4VtsBwJSGlFKUaBVLMmgWR0CmdYgwwj+rdX2UKGgGaAloD0MIXRWoxeChCMCUhpRSlGgVSzJoFkdApnUp8c+7lXV9lChoBmgJaA9DCOmY84x9ORHAlIaUUpRoFUsyaBZHQKZ3PxT850d1fZQoaAZoCWgPQwh2/1iIDiEHwJSGlFKUaBVLMmgWR0Cmdt8Yht+DdX2UKGgGaAloD0MImUhpNo+zEcCUhpRSlGgVSzJoFkdApnaBsl9jPXV9lChoBmgJaA9DCHy1ozhHPQnAlIaUUpRoFUsyaBZHQKZ2I3qAz551ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fef45b98ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fef45b89700>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682897232276797038, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHjCHPtjDJT5R4i0/HjCHPtjDJT5R4i0/HjCHPtjDJT5R4i0/HjCHPtjDJT5R4i0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASTqkvlDW0z/hy6+/7jKvPxb7kT8QLIM+aPLbPbQKmb/spug+mVfdvlkF2T+235S9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAeMIc+2MMlPlHiLT+LPTs8kSe8PKWPCz0eMIc+2MMlPlHiLT+LPTs8kSe8PKWPCz0eMIc+2MMlPlHiLT+LPTs8kSe8PKWPCz0eMIc+2MMlPlHiLT+LPTs8kSe8PKWPCz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.26403898 0.1618799 0.67923456]\n [0.26403898 0.1618799 0.67923456]\n [0.26403898 0.1618799 0.67923456]\n [0.26403898 0.1618799 0.67923456]]", "desired_goal": "[[-0.32075718 1.6549778 -1.3734094 ]\n [ 1.3687418 1.140475 0.25619555]\n [ 0.10739595 -1.1956391 0.4543985 ]\n [-0.43230894 1.6954757 -0.07269232]]", "observation": "[[0.26403898 0.1618799 0.67923456 0.01142825 0.02296809 0.03407254]\n [0.26403898 0.1618799 0.67923456 0.01142825 0.02296809 0.03407254]\n [0.26403898 0.1618799 0.67923456 0.01142825 0.02296809 0.03407254]\n [0.26403898 0.1618799 0.67923456 0.01142825 0.02296809 0.03407254]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4JvqvekfFb7Ac5g+JX4FvpLi4j0FB5Q+QUEKvsWJt71P8w0++MJ1PSmELj3vq3E9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11455512 -0.14562954 0.2977581 ]\n [-0.13036402 0.11078371 0.28911605]\n [-0.13501455 -0.08961824 0.13862346]\n [ 0.06000039 0.04260651 0.05900186]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITBjNyvb5IsCUhpRSlIwBbJRLMowBdJRHQKUTlyaNMoN1fZQoaAZoCWgPQwglJNI2/kgxwJSGlFKUaBVLMmgWR0ClE0Nke6qbdX2UKGgGaAloD0MIAg6hSs3WJ8CUhpRSlGgVSzJoFkdApRLuS+xnnXV9lChoBmgJaA9DCFGC/kKPACjAlIaUUpRoFUsyaBZHQKUSkOzY2891fZQoaAZoCWgPQwgSvCGNCrgywJSGlFKUaBVLMmgWR0ClFLXbM5fddX2UKGgGaAloD0MICyk/qfYxK8CUhpRSlGgVSzJoFkdApRRhGe+VT3V9lChoBmgJaA9DCNbFbTSAyzPAlIaUUpRoFUsyaBZHQKUUCmu1WsB1fZQoaAZoCWgPQwjn4m97gpwlwJSGlFKUaBVLMmgWR0ClE6x6OYICdX2UKGgGaAloD0MI1UDzOXfDMcCUhpRSlGgVSzJoFkdApRWkkOZssXV9lChoBmgJaA9DCBRa1v1jASnAlIaUUpRoFUsyaBZHQKUVUQMhHLB1fZQoaAZoCWgPQwjaOc0C7eI0wJSGlFKUaBVLMmgWR0ClFPoZ62ORdX2UKGgGaAloD0MIqz/CMGC5JMCUhpRSlGgVSzJoFkdApRScNDtw73V9lChoBmgJaA9DCF3cRgN4+yTAlIaUUpRoFUsyaBZHQKUWisvIwM91fZQoaAZoCWgPQwjFHtrHCoY0wJSGlFKUaBVLMmgWR0ClFjY95hScdX2UKGgGaAloD0MItObHX1pEIcCUhpRSlGgVSzJoFkdApRXfpOerdXV9lChoBmgJaA9DCMEcPX5v8zLAlIaUUpRoFUsyaBZHQKUVgauOjqR1fZQoaAZoCWgPQwj5SEp6GGIhwJSGlFKUaBVLMmgWR0ClF3UGu9vkdX2UKGgGaAloD0MIh22LMhuUIcCUhpRSlGgVSzJoFkdApRcg2Q4jr3V9lChoBmgJaA9DCE5eZAJ+9SbAlIaUUpRoFUsyaBZHQKUWyrlNlAh1fZQoaAZoCWgPQwjIDFTGv7s2wJSGlFKUaBVLMmgWR0ClFm0TcqOMdX2UKGgGaAloD0MIM4rlllbDNcCUhpRSlGgVSzJoFkdApRhxeHBUJnV9lChoBmgJaA9DCOyIQzaQdi3AlIaUUpRoFUsyaBZHQKUYHK3/gix1fZQoaAZoCWgPQwjZQSWuY5QhwJSGlFKUaBVLMmgWR0ClF8XWe6I4dX2UKGgGaAloD0MICp3X2CXaOsCUhpRSlGgVSzJoFkdApRdoESuhbnV9lChoBmgJaA9DCGNH41C/CzPAlIaUUpRoFUsyaBZHQKUZTfCQ9zR1fZQoaAZoCWgPQwiz6nO1FSsswJSGlFKUaBVLMmgWR0ClGPk3juKGdX2UKGgGaAloD0MIuVUQA11TI8CUhpRSlGgVSzJoFkdApRiiYb83uXV9lChoBmgJaA9DCJIkCFdAcS7AlIaUUpRoFUsyaBZHQKUYRHlOoHd1fZQoaAZoCWgPQwiIad/cX/0jwJSGlFKUaBVLMmgWR0ClGjxGMGX5dX2UKGgGaAloD0MIADj27LmoNMCUhpRSlGgVSzJoFkdApRnnrrxAjnV9lChoBmgJaA9DCI4+5gMCVSDAlIaUUpRoFUsyaBZHQKUZkNaQmu11fZQoaAZoCWgPQwgSoKaWraE4wJSGlFKUaBVLMmgWR0ClGTMDfWMCdX2UKGgGaAloD0MIntMs0O50MMCUhpRSlGgVSzJoFkdApRsevhZQpHV9lChoBmgJaA9DCNE8gEV+TTTAlIaUUpRoFUsyaBZHQKUayhTwUg11fZQoaAZoCWgPQwgHB3sTQ3owwJSGlFKUaBVLMmgWR0ClGnNapxWDdX2UKGgGaAloD0MIvokhOZkIGcCUhpRSlGgVSzJoFkdApRoVXiiqQ3V9lChoBmgJaA9DCMNmgAuyNS3AlIaUUpRoFUsyaBZHQKUcDdY4hll1fZQoaAZoCWgPQwin5nKDoZ4kwJSGlFKUaBVLMmgWR0ClG7kO7QLNdX2UKGgGaAloD0MIJGJKJNHjLcCUhpRSlGgVSzJoFkdApRtiT+vQnnV9lChoBmgJaA9DCDJ2wktwwjDAlIaUUpRoFUsyaBZHQKUbBEvTPSl1fZQoaAZoCWgPQwiOlC2SdrstwJSGlFKUaBVLMmgWR0ClHOu2Zy+6dX2UKGgGaAloD0MI6WD9n8PoOsCUhpRSlGgVSzJoFkdApRyXH1e0HHV9lChoBmgJaA9DCBPwayQJmjfAlIaUUpRoFUsyaBZHQKUcQFIuoP11fZQoaAZoCWgPQwgPQkC+hOIvwJSGlFKUaBVLMmgWR0ClG+JyZKFqdX2UKGgGaAloD0MI7E/icyd4IsCUhpRSlGgVSzJoFkdApR3Y93bEgnV9lChoBmgJaA9DCPcA3ZczcyfAlIaUUpRoFUsyaBZHQKUdhEYO2Ap1fZQoaAZoCWgPQwjSjEXT2Y0wwJSGlFKUaBVLMmgWR0ClHS1stTUBdX2UKGgGaAloD0MIw9Zs5SUHMMCUhpRSlGgVSzJoFkdApRzPoC+10HV9lChoBmgJaA9DCAq7KHrgMyXAlIaUUpRoFUsyaBZHQKUeugRsdkt1fZQoaAZoCWgPQwgKZkzBGk8+wJSGlFKUaBVLMmgWR0ClHmVn27FsdX2UKGgGaAloD0MIlq/L8J+2IcCUhpRSlGgVSzJoFkdApR4OfNA1N3V9lChoBmgJaA9DCICCixU1UCPAlIaUUpRoFUsyaBZHQKUdsWYWtU51fZQoaAZoCWgPQwi++njou88ywJSGlFKUaBVLMmgWR0ClH6TVUdaMdX2UKGgGaAloD0MIseB+wAMLIsCUhpRSlGgVSzJoFkdApR9QCGN70HV9lChoBmgJaA9DCKG7JM6K+CPAlIaUUpRoFUsyaBZHQKUe+RoRIz51fZQoaAZoCWgPQwjtgVZgyFItwJSGlFKUaBVLMmgWR0ClHptTcZccdX2UKGgGaAloD0MIPGagMv71J8CUhpRSlGgVSzJoFkdApSCGseXAunV9lChoBmgJaA9DCK1POSaLcyrAlIaUUpRoFUsyaBZHQKUgMiPhhph1fZQoaAZoCWgPQwgoSddMvh0wwJSGlFKUaBVLMmgWR0ClH9tJFspHdX2UKGgGaAloD0MIZLDiVGu9MMCUhpRSlGgVSzJoFkdApR99U0elsXV9lChoBmgJaA9DCNCzWfW58ivAlIaUUpRoFUsyaBZHQKUhbcPe54J1fZQoaAZoCWgPQwjDLLRzmmk8wJSGlFKUaBVLMmgWR0ClIRk078vVdX2UKGgGaAloD0MIzEHQ0aqGJMCUhpRSlGgVSzJoFkdApSDCWJJoTXV9lChoBmgJaA9DCE+UhETari7AlIaUUpRoFUsyaBZHQKUgZJxNqQB1fZQoaAZoCWgPQwgf8wGBzhQkwJSGlFKUaBVLMmgWR0ClIlMN+b3HdX2UKGgGaAloD0MImn0eozxTJMCUhpRSlGgVSzJoFkdApSH+RT0g83V9lChoBmgJaA9DCGHj+nd9Xi3AlIaUUpRoFUsyaBZHQKUhp1Hvtt11fZQoaAZoCWgPQwgnEkw1s642wJSGlFKUaBVLMmgWR0ClIUlw97ngdX2UKGgGaAloD0MI1v85zJebOsCUhpRSlGgVSzJoFkdApSMv7FbV0HV9lChoBmgJaA9DCIqtoGmJBTDAlIaUUpRoFUsyaBZHQKUi2w7kn1F1fZQoaAZoCWgPQwhO7QxTW5ohwJSGlFKUaBVLMmgWR0ClIoQtjCpFdX2UKGgGaAloD0MIK4iBrn2JK8CUhpRSlGgVSzJoFkdApSImR/3Fk3V9lChoBmgJaA9DCEimQ6fnyTLAlIaUUpRoFUsyaBZHQKUkCTX8O091fZQoaAZoCWgPQwhkWTDxR2kmwJSGlFKUaBVLMmgWR0ClI7SDZlFudX2UKGgGaAloD0MI5nYv98kJI8CUhpRSlGgVSzJoFkdApSNduR9w33V9lChoBmgJaA9DCJoiwOldfB/AlIaUUpRoFUsyaBZHQKUi/72tdRl1fZQoaAZoCWgPQwh/iA0WTlojwJSGlFKUaBVLMmgWR0ClJOsERraedX2UKGgGaAloD0MI+FEN+z09M8CUhpRSlGgVSzJoFkdApSSWYYzi0nV9lChoBmgJaA9DCBJsXP+uPzbAlIaUUpRoFUsyaBZHQKUkP4cm0E51fZQoaAZoCWgPQwiF6XsNwXEqwJSGlFKUaBVLMmgWR0ClI+F2eQMhdX2UKGgGaAloD0MIZD+LpUiiNcCUhpRSlGgVSzJoFkdApSXToIOYpnV9lChoBmgJaA9DCPmE7LyN/TXAlIaUUpRoFUsyaBZHQKUlfvUjLSx1fZQoaAZoCWgPQwhSCyWTUx80wJSGlFKUaBVLMmgWR0ClJSgpSaVldX2UKGgGaAloD0MI3WETmbkQIcCUhpRSlGgVSzJoFkdApSTKMtK7I3V9lChoBmgJaA9DCBO6S+KsuDrAlIaUUpRoFUsyaBZHQKUmw3solUp1fZQoaAZoCWgPQwiOAkTBjJ00wJSGlFKUaBVLMmgWR0ClJm7K7qY7dX2UKGgGaAloD0MIyLPLtz50McCUhpRSlGgVSzJoFkdApSYX8XN1Q3V9lChoBmgJaA9DCB2s/3OYxzbAlIaUUpRoFUsyaBZHQKUlujHn2Zl1fZQoaAZoCWgPQwiRDaSLTasYwJSGlFKUaBVLMmgWR0ClJ6EH+qBFdX2UKGgGaAloD0MIH2rbMAqGNsCUhpRSlGgVSzJoFkdApSdMfgaWHHV9lChoBmgJaA9DCPiqlQm/3DbAlIaUUpRoFUsyaBZHQKUm9bgTAWV1fZQoaAZoCWgPQwjZzvdT450jwJSGlFKUaBVLMmgWR0ClJpeo1k1/dX2UKGgGaAloD0MIct2U8lpBKMCUhpRSlGgVSzJoFkdApSjaNZNfxHV9lChoBmgJaA9DCM0GmWTkdDTAlIaUUpRoFUsyaBZHQKUohnoPkJd1fZQoaAZoCWgPQwgXEcXkDfAzwJSGlFKUaBVLMmgWR0ClKDClrM1TdX2UKGgGaAloD0MIstXllIDsNcCUhpRSlGgVSzJoFkdApSfTpeNT+HV9lChoBmgJaA9DCN+KxAQ11DTAlIaUUpRoFUsyaBZHQKUqS+aBqbl1fZQoaAZoCWgPQwjqPZXTnoo3wJSGlFKUaBVLMmgWR0ClKffpljEvdX2UKGgGaAloD0MIVKuvrgr0IsCUhpRSlGgVSzJoFkdApSmi6reZX3V9lChoBmgJaA9DCB7dCIuKUDXAlIaUUpRoFUsyaBZHQKUpReN1hb51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.95, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -19.640486772358418, "std_reward": 4.5014358481244, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-01T00:22:28.683059"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec8170f8d56feb96c84bafcdee42017104a27ca653952135d4b386c9172d7062
|
3 |
size 2387
|