Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +19 -17
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.61 +/- 0.22
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c40cff251adc7abd12b389e0a8139f0dcd7725003cc2e5c25145ec7b896c70d
|
3 |
+
size 109547
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -11,7 +11,9 @@
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -24,19 +26,19 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
-
"learning_rate": 0.
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[-
|
39 |
-
"observation": "[[0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,30 +46,30 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[-0.
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
-
"use_sde":
|
54 |
"sde_sample_freq": -1,
|
55 |
"_current_progress_remaining": 0.0,
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
-
"n_steps":
|
67 |
-
"gamma": 0.
|
68 |
-
"gae_lambda":
|
69 |
"ent_coef": 0.0,
|
70 |
-
"vf_coef": 0.
|
71 |
"max_grad_norm": 0.5,
|
72 |
"normalize_advantage": false,
|
73 |
"observation_space": {
|
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1682901084873447258,
|
30 |
+
"learning_rate": 0.0001,
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
33 |
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'collections.OrderedDict'>",
|
38 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAApKdLPkBQcTzNlMM/pKdLPkBQcTzNlMM/pKdLPkBQcTzNlMM/pKdLPkBQcTzNlMM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKoyUv/nSHL80fYc/cQHZv+Dy7r7eDE8/eGPJv+C9qj9KssM+xLeIPyHdzT7+VOA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACkp0s+QFBxPM2Uwz81imw9KerOO/m/iT2kp0s+QFBxPM2Uwz81imw9KerOO/m/iT2kp0s+QFBxPM2Uwz81imw9KerOO/m/iT2kp0s+QFBxPM2Uwz81imw9KerOO/m/iT2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
39 |
+
"achieved_goal": "[[0.19888169 0.01472861 1.5279785 ]\n [0.19888169 0.01472861 1.5279785 ]\n [0.19888169 0.01472861 1.5279785 ]\n [0.19888169 0.01472861 1.5279785 ]]",
|
40 |
+
"desired_goal": "[[-1.1605275 -0.6125942 1.0585084 ]\n [-1.6953565 -0.46669674 0.8087901 ]\n [-1.573348 1.3339195 0.3822196 ]\n [ 1.0681081 0.4020777 0.43814844]]",
|
41 |
+
"observation": "[[0.19888169 0.01472861 1.5279785 0.05774899 0.00631454 0.06726069]\n [0.19888169 0.01472861 1.5279785 0.05774899 0.00631454 0.06726069]\n [0.19888169 0.01472861 1.5279785 0.05774899 0.00631454 0.06726069]\n [0.19888169 0.01472861 1.5279785 0.05774899 0.00631454 0.06726069]]"
|
42 |
},
|
43 |
"_last_episode_starts": {
|
44 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
46 |
},
|
47 |
"_last_original_obs": {
|
48 |
":type:": "<class 'collections.OrderedDict'>",
|
49 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbF+5vTdwFz6/rU49E2a/Pcu/dTvqzBk9+T52PfgWXL3gDpM9kLGrvcNIzD3JQ4E+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
50 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
51 |
+
"desired_goal": "[[-0.09051403 0.147889 0.05045867]\n [ 0.09345641 0.00374984 0.03754894]\n [ 0.06011865 -0.05373284 0.07180572]\n [-0.08383477 0.09974816 0.25247028]]",
|
52 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
53 |
},
|
54 |
"_episode_num": 0,
|
55 |
+
"use_sde": true,
|
56 |
"sde_sample_freq": -1,
|
57 |
"_current_progress_remaining": 0.0,
|
58 |
"_stats_window_size": 100,
|
59 |
"ep_info_buffer": {
|
60 |
":type:": "<class 'collections.deque'>",
|
61 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIO8eA7PVu8L+UhpRSlIwBbJRLMowBdJRHQKPgmBtDUmV1fZQoaAZoCWgPQwj4+e/Ba5fwv5SGlFKUaBVLMmgWR0Cj4Ee7cwg1dX2UKGgGaAloD0MIxCRcyCP48r+UhpRSlGgVSzJoFkdAo9/v1zySWHV9lChoBmgJaA9DCKRyE7U0t+y/lIaUUpRoFUsyaBZHQKPfmQ04zad1fZQoaAZoCWgPQwiVtyOcFjzsv5SGlFKUaBVLMmgWR0Cj4ilnZkCndX2UKGgGaAloD0MIym/RyVJr6b+UhpRSlGgVSzJoFkdAo+HYoTfzjHV9lChoBmgJaA9DCDF8REyJJOy/lIaUUpRoFUsyaBZHQKPhgP4mCy11fZQoaAZoCWgPQwikNQadEHr4v5SGlFKUaBVLMmgWR0Cj4SsiB5HFdX2UKGgGaAloD0MIDf5+MVuy6r+UhpRSlGgVSzJoFkdAo+MGtjkMkXV9lChoBmgJaA9DCIeHMH4a9+2/lIaUUpRoFUsyaBZHQKPitdJrcj91fZQoaAZoCWgPQwjVeyqnPSXyv5SGlFKUaBVLMmgWR0Cj4l2BjFyadX2UKGgGaAloD0MIt9WsM76v77+UhpRSlGgVSzJoFkdAo+IF94NZvHV9lChoBmgJaA9DCLb3qSo0EO6/lIaUUpRoFUsyaBZHQKPj6sPrfLt1fZQoaAZoCWgPQwixw5j099Lpv5SGlFKUaBVLMmgWR0Cj45nSfDk3dX2UKGgGaAloD0MI3X2OjxZn6L+UhpRSlGgVSzJoFkdAo+NBavA443V9lChoBmgJaA9DCGXHRiBeV+y/lIaUUpRoFUsyaBZHQKPi6fA9FF51fZQoaAZoCWgPQwig/x68dunsv5SGlFKUaBVLMmgWR0Cj5MybH6uXdX2UKGgGaAloD0MIYRvxZDfz8b+UhpRSlGgVSzJoFkdAo+R79If8uXV9lChoBmgJaA9DCJXSM73EWOy/lIaUUpRoFUsyaBZHQKPkI7aIval1fZQoaAZoCWgPQwjBApgycMDyv5SGlFKUaBVLMmgWR0Cj48xZU1htdX2UKGgGaAloD0MIV7WkoxzM87+UhpRSlGgVSzJoFkdAo+WmDL8rJHV9lChoBmgJaA9DCBk74SU4dfK/lIaUUpRoFUsyaBZHQKPlVWT5ftx1fZQoaAZoCWgPQwj8GkmCcEX3v5SGlFKUaBVLMmgWR0Cj5P0Aksz3dX2UKGgGaAloD0MI6BIOvcVD5b+UhpRSlGgVSzJoFkdAo+Slf/m1Y3V9lChoBmgJaA9DCDhqhel7Dey/lIaUUpRoFUsyaBZHQKPmkUFjd591fZQoaAZoCWgPQwgRVmMJa+Psv5SGlFKUaBVLMmgWR0Cj5kCHqNZNdX2UKGgGaAloD0MIrtNIS+Xt8L+UhpRSlGgVSzJoFkdAo+XoLb5/LHV9lChoBmgJaA9DCPJ5xVOPNPS/lIaUUpRoFUsyaBZHQKPlkQlKK511fZQoaAZoCWgPQwgSL0/nitLqv5SGlFKUaBVLMmgWR0Cj525hScbzdX2UKGgGaAloD0MIjliLTwGw7L+UhpRSlGgVSzJoFkdAo+cdsBQvYnV9lChoBmgJaA9DCPEvgsZMou6/lIaUUpRoFUsyaBZHQKPmxXUYsNF1fZQoaAZoCWgPQwhn8zgM5q/nv5SGlFKUaBVLMmgWR0Cj5m4Yzi0fdX2UKGgGaAloD0MIDp4JTRJL5b+UhpRSlGgVSzJoFkdAo+i6G34KyHV9lChoBmgJaA9DCI//AkGAjOm/lIaUUpRoFUsyaBZHQKPoaixmkFh1fZQoaAZoCWgPQwgHB3sTQ3Lzv5SGlFKUaBVLMmgWR0Cj6BJBw++udX2UKGgGaAloD0MIq5ffaTKj87+UhpRSlGgVSzJoFkdAo+e7Ud7v5XV9lChoBmgJaA9DCDgQkgVMoPO/lIaUUpRoFUsyaBZHQKPqF3aBZp11fZQoaAZoCWgPQwiSBOEKKFTmv5SGlFKUaBVLMmgWR0Cj6cdwvQF+dX2UKGgGaAloD0MIGmoUkswq9b+UhpRSlGgVSzJoFkdAo+lvbCaZyHV9lChoBmgJaA9DCESmfAiqBvC/lIaUUpRoFUsyaBZHQKPpGOI68xt1fZQoaAZoCWgPQwja5sb0hCXov5SGlFKUaBVLMmgWR0Cj68D3ueBhdX2UKGgGaAloD0MIDJV/La9c6r+UhpRSlGgVSzJoFkdAo+twvN/vv3V9lChoBmgJaA9DCKkR+pl6Xe6/lIaUUpRoFUsyaBZHQKPrGONHYpV1fZQoaAZoCWgPQwjJWdjTDr/wv5SGlFKUaBVLMmgWR0Cj6sHtv4ucdX2UKGgGaAloD0MIr9AHy9hQ6b+UhpRSlGgVSzJoFkdAo+1W87IT5HV9lChoBmgJaA9DCEyIuaRqe/C/lIaUUpRoFUsyaBZHQKPtB1/Ue+51fZQoaAZoCWgPQwg74SU49QHwv5SGlFKUaBVLMmgWR0Cj7LCPZIxydX2UKGgGaAloD0MILJ0PzxLk7L+UhpRSlGgVSzJoFkdAo+xaAH3UQXV9lChoBmgJaA9DCHpSJjW0Ae6/lIaUUpRoFUsyaBZHQKPvCQEIPbx1fZQoaAZoCWgPQwgk7rH0oYvpv5SGlFKUaBVLMmgWR0Cj7rkEkjX4dX2UKGgGaAloD0MIHvzEAfR79r+UhpRSlGgVSzJoFkdAo+5h24d6s3V9lChoBmgJaA9DCFdD4h5Ln/W/lIaUUpRoFUsyaBZHQKPuC41gpjN1fZQoaAZoCWgPQwgs9SwI5f3yv5SGlFKUaBVLMmgWR0Cj8JEdeY2LdX2UKGgGaAloD0MIfCdmvRjK7b+UhpRSlGgVSzJoFkdAo/BArDqGDnV9lChoBmgJaA9DCHzzGyYaJO6/lIaUUpRoFUsyaBZHQKPv6JBPbfx1fZQoaAZoCWgPQwgNw0fElIjyv5SGlFKUaBVLMmgWR0Cj75G+9Jz1dX2UKGgGaAloD0MIt3pOet946b+UhpRSlGgVSzJoFkdAo/HkHD766HV9lChoBmgJaA9DCHhflQuVv/O/lIaUUpRoFUsyaBZHQKPxk0MPSUl1fZQoaAZoCWgPQwhTCU/o9afmv5SGlFKUaBVLMmgWR0Cj8TqveP7vdX2UKGgGaAloD0MIo3iVtU3x7r+UhpRSlGgVSzJoFkdAo/DjQE6kqXV9lChoBmgJaA9DCAKbc/BM6O+/lIaUUpRoFUsyaBZHQKPyxi0fHPx1fZQoaAZoCWgPQwhFup9TkF/wv5SGlFKUaBVLMmgWR0Cj8nVqFh5PdX2UKGgGaAloD0MIiEm4kEcw8L+UhpRSlGgVSzJoFkdAo/IdGus90XV9lChoBmgJaA9DCCYceouHd+y/lIaUUpRoFUsyaBZHQKPxxZX+2mZ1fZQoaAZoCWgPQwgN4C2QoPjov5SGlFKUaBVLMmgWR0Cj86e49X9zdX2UKGgGaAloD0MIfT7KiAvA7b+UhpRSlGgVSzJoFkdAo/NXGACnxnV9lChoBmgJaA9DCDm536EokPW/lIaUUpRoFUsyaBZHQKPy/tmcvuh1fZQoaAZoCWgPQwhmahK8IU30v5SGlFKUaBVLMmgWR0Cj8qdLpRoAdX2UKGgGaAloD0MIt9WsM76v7b+UhpRSlGgVSzJoFkdAo/STeyiVSnV9lChoBmgJaA9DCOrNqPkqeee/lIaUUpRoFUsyaBZHQKP0Quieumt1fZQoaAZoCWgPQwjIREqzeVzyv5SGlFKUaBVLMmgWR0Cj8+tI065odX2UKGgGaAloD0MIAmcpWU7C8b+UhpRSlGgVSzJoFkdAo/OTz5GjK3V9lChoBmgJaA9DCAIQd/UqcvO/lIaUUpRoFUsyaBZHQKP1idK/VRV1fZQoaAZoCWgPQwhMiLmkajvqv5SGlFKUaBVLMmgWR0Cj9Tj/EOy3dX2UKGgGaAloD0MIF7fRAN5C8L+UhpRSlGgVSzJoFkdAo/Tgjlgc+HV9lChoBmgJaA9DCIuIYvIGGPO/lIaUUpRoFUsyaBZHQKP0iQ176YV1fZQoaAZoCWgPQwhsBrggW5bvv5SGlFKUaBVLMmgWR0Cj9mTfaYeDdX2UKGgGaAloD0MICg+aXfdW5b+UhpRSlGgVSzJoFkdAo/YUH8jzI3V9lChoBmgJaA9DCFcFajF42PC/lIaUUpRoFUsyaBZHQKP1vFdcB2h1fZQoaAZoCWgPQwgnhA66hEPxv5SGlFKUaBVLMmgWR0Cj9WVafSQYdX2UKGgGaAloD0MIrrmj/+Wa8L+UhpRSlGgVSzJoFkdAo/dMfms/6nV9lChoBmgJaA9DCGLWi6GcKPG/lIaUUpRoFUsyaBZHQKP2+5UcXFd1fZQoaAZoCWgPQwjkgcgiTTzlv5SGlFKUaBVLMmgWR0Cj9qM9r434dX2UKGgGaAloD0MI1gEQd/Uq7b+UhpRSlGgVSzJoFkdAo/ZLwOOKfnV9lChoBmgJaA9DCFis4SL39PG/lIaUUpRoFUsyaBZHQKP4R4mCyyF1fZQoaAZoCWgPQwiUNH9MaxP3v5SGlFKUaBVLMmgWR0Cj9/bQLNOedX2UKGgGaAloD0MIaxDmdi937r+UhpRSlGgVSzJoFkdAo/efBxgiNnV9lChoBmgJaA9DCF1r71NVaPC/lIaUUpRoFUsyaBZHQKP3SDEm6Xl1fZQoaAZoCWgPQwgHXi13ZoLyv5SGlFKUaBVLMmgWR0Cj+SagdwNtdX2UKGgGaAloD0MIe2r11VUB9b+UhpRSlGgVSzJoFkdAo/jVz+3pfXV9lChoBmgJaA9DCFZ9rrZi//K/lIaUUpRoFUsyaBZHQKP4fTXrdFh1fZQoaAZoCWgPQwjytPzAVV70v5SGlFKUaBVLMmgWR0Cj+CXeFcptdX2UKGgGaAloD0MITDWzlgIS8L+UhpRSlGgVSzJoFkdAo/oKwY+B6XV9lChoBmgJaA9DCNLEO8CTlu2/lIaUUpRoFUsyaBZHQKP5uhcqvvB1fZQoaAZoCWgPQwiRe7q6YzHzv5SGlFKUaBVLMmgWR0Cj+WGvGIbgdX2UKGgGaAloD0MIP47myMov6b+UhpRSlGgVSzJoFkdAo/kKOLiuMnV9lChoBmgJaA9DCA68Wu7MhOm/lIaUUpRoFUsyaBZHQKP7AAWi1zB1fZQoaAZoCWgPQwgm/FI/b6rqv5SGlFKUaBVLMmgWR0Cj+q8brC3xdX2UKGgGaAloD0MIKc5RR8dV7b+UhpRSlGgVSzJoFkdAo/pWh4+r2nV9lChoBmgJaA9DCO8bX3tmSfO/lIaUUpRoFUsyaBZHQKP5/0K7ZnN1ZS4="
|
62 |
},
|
63 |
"ep_success_buffer": {
|
64 |
":type:": "<class 'collections.deque'>",
|
65 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
66 |
},
|
67 |
+
"_n_updates": 31250,
|
68 |
+
"n_steps": 8,
|
69 |
+
"gamma": 0.99,
|
70 |
+
"gae_lambda": 0.9,
|
71 |
"ent_coef": 0.0,
|
72 |
+
"vf_coef": 0.4,
|
73 |
"max_grad_norm": 0.5,
|
74 |
"normalize_advantage": false,
|
75 |
"observation_space": {
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfc35286fb55590cefd5f759cf5a6969c3479c87aff465d2a0b7fbe65ee8da1f
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5358e1d2450227f28f81c44ad0cb5ed0f64918abe759f4bcda6ec08424666ff0
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fef45b98ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fef45b89700>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682897232276797038, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHjCHPtjDJT5R4i0/HjCHPtjDJT5R4i0/HjCHPtjDJT5R4i0/HjCHPtjDJT5R4i0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASTqkvlDW0z/hy6+/7jKvPxb7kT8QLIM+aPLbPbQKmb/spug+mVfdvlkF2T+235S9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAeMIc+2MMlPlHiLT+LPTs8kSe8PKWPCz0eMIc+2MMlPlHiLT+LPTs8kSe8PKWPCz0eMIc+2MMlPlHiLT+LPTs8kSe8PKWPCz0eMIc+2MMlPlHiLT+LPTs8kSe8PKWPCz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.26403898 0.1618799 0.67923456]\n [0.26403898 0.1618799 0.67923456]\n [0.26403898 0.1618799 0.67923456]\n [0.26403898 0.1618799 0.67923456]]", "desired_goal": "[[-0.32075718 1.6549778 -1.3734094 ]\n [ 1.3687418 1.140475 0.25619555]\n [ 0.10739595 -1.1956391 0.4543985 ]\n [-0.43230894 1.6954757 -0.07269232]]", "observation": "[[0.26403898 0.1618799 0.67923456 0.01142825 0.02296809 0.03407254]\n [0.26403898 0.1618799 0.67923456 0.01142825 0.02296809 0.03407254]\n [0.26403898 0.1618799 0.67923456 0.01142825 0.02296809 0.03407254]\n [0.26403898 0.1618799 0.67923456 0.01142825 0.02296809 0.03407254]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4JvqvekfFb7Ac5g+JX4FvpLi4j0FB5Q+QUEKvsWJt71P8w0++MJ1PSmELj3vq3E9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11455512 -0.14562954 0.2977581 ]\n [-0.13036402 0.11078371 0.28911605]\n [-0.13501455 -0.08961824 0.13862346]\n [ 0.06000039 0.04260651 0.05900186]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITBjNyvb5IsCUhpRSlIwBbJRLMowBdJRHQKUTlyaNMoN1fZQoaAZoCWgPQwglJNI2/kgxwJSGlFKUaBVLMmgWR0ClE0Nke6qbdX2UKGgGaAloD0MIAg6hSs3WJ8CUhpRSlGgVSzJoFkdApRLuS+xnnXV9lChoBmgJaA9DCFGC/kKPACjAlIaUUpRoFUsyaBZHQKUSkOzY2891fZQoaAZoCWgPQwgSvCGNCrgywJSGlFKUaBVLMmgWR0ClFLXbM5fddX2UKGgGaAloD0MICyk/qfYxK8CUhpRSlGgVSzJoFkdApRRhGe+VT3V9lChoBmgJaA9DCNbFbTSAyzPAlIaUUpRoFUsyaBZHQKUUCmu1WsB1fZQoaAZoCWgPQwjn4m97gpwlwJSGlFKUaBVLMmgWR0ClE6x6OYICdX2UKGgGaAloD0MI1UDzOXfDMcCUhpRSlGgVSzJoFkdApRWkkOZssXV9lChoBmgJaA9DCBRa1v1jASnAlIaUUpRoFUsyaBZHQKUVUQMhHLB1fZQoaAZoCWgPQwjaOc0C7eI0wJSGlFKUaBVLMmgWR0ClFPoZ62ORdX2UKGgGaAloD0MIqz/CMGC5JMCUhpRSlGgVSzJoFkdApRScNDtw73V9lChoBmgJaA9DCF3cRgN4+yTAlIaUUpRoFUsyaBZHQKUWisvIwM91fZQoaAZoCWgPQwjFHtrHCoY0wJSGlFKUaBVLMmgWR0ClFjY95hScdX2UKGgGaAloD0MItObHX1pEIcCUhpRSlGgVSzJoFkdApRXfpOerdXV9lChoBmgJaA9DCMEcPX5v8zLAlIaUUpRoFUsyaBZHQKUVgauOjqR1fZQoaAZoCWgPQwj5SEp6GGIhwJSGlFKUaBVLMmgWR0ClF3UGu9vkdX2UKGgGaAloD0MIh22LMhuUIcCUhpRSlGgVSzJoFkdApRcg2Q4jr3V9lChoBmgJaA9DCE5eZAJ+9SbAlIaUUpRoFUsyaBZHQKUWyrlNlAh1fZQoaAZoCWgPQwjIDFTGv7s2wJSGlFKUaBVLMmgWR0ClFm0TcqOMdX2UKGgGaAloD0MIM4rlllbDNcCUhpRSlGgVSzJoFkdApRhxeHBUJnV9lChoBmgJaA9DCOyIQzaQdi3AlIaUUpRoFUsyaBZHQKUYHK3/gix1fZQoaAZoCWgPQwjZQSWuY5QhwJSGlFKUaBVLMmgWR0ClF8XWe6I4dX2UKGgGaAloD0MICp3X2CXaOsCUhpRSlGgVSzJoFkdApRdoESuhbnV9lChoBmgJaA9DCGNH41C/CzPAlIaUUpRoFUsyaBZHQKUZTfCQ9zR1fZQoaAZoCWgPQwiz6nO1FSsswJSGlFKUaBVLMmgWR0ClGPk3juKGdX2UKGgGaAloD0MIuVUQA11TI8CUhpRSlGgVSzJoFkdApRiiYb83uXV9lChoBmgJaA9DCJIkCFdAcS7AlIaUUpRoFUsyaBZHQKUYRHlOoHd1fZQoaAZoCWgPQwiIad/cX/0jwJSGlFKUaBVLMmgWR0ClGjxGMGX5dX2UKGgGaAloD0MIADj27LmoNMCUhpRSlGgVSzJoFkdApRnnrrxAjnV9lChoBmgJaA9DCI4+5gMCVSDAlIaUUpRoFUsyaBZHQKUZkNaQmu11fZQoaAZoCWgPQwgSoKaWraE4wJSGlFKUaBVLMmgWR0ClGTMDfWMCdX2UKGgGaAloD0MIntMs0O50MMCUhpRSlGgVSzJoFkdApRsevhZQpHV9lChoBmgJaA9DCNE8gEV+TTTAlIaUUpRoFUsyaBZHQKUayhTwUg11fZQoaAZoCWgPQwgHB3sTQ3owwJSGlFKUaBVLMmgWR0ClGnNapxWDdX2UKGgGaAloD0MIvokhOZkIGcCUhpRSlGgVSzJoFkdApRoVXiiqQ3V9lChoBmgJaA9DCMNmgAuyNS3AlIaUUpRoFUsyaBZHQKUcDdY4hll1fZQoaAZoCWgPQwin5nKDoZ4kwJSGlFKUaBVLMmgWR0ClG7kO7QLNdX2UKGgGaAloD0MIJGJKJNHjLcCUhpRSlGgVSzJoFkdApRtiT+vQnnV9lChoBmgJaA9DCDJ2wktwwjDAlIaUUpRoFUsyaBZHQKUbBEvTPSl1fZQoaAZoCWgPQwiOlC2SdrstwJSGlFKUaBVLMmgWR0ClHOu2Zy+6dX2UKGgGaAloD0MI6WD9n8PoOsCUhpRSlGgVSzJoFkdApRyXH1e0HHV9lChoBmgJaA9DCBPwayQJmjfAlIaUUpRoFUsyaBZHQKUcQFIuoP11fZQoaAZoCWgPQwgPQkC+hOIvwJSGlFKUaBVLMmgWR0ClG+JyZKFqdX2UKGgGaAloD0MI7E/icyd4IsCUhpRSlGgVSzJoFkdApR3Y93bEgnV9lChoBmgJaA9DCPcA3ZczcyfAlIaUUpRoFUsyaBZHQKUdhEYO2Ap1fZQoaAZoCWgPQwjSjEXT2Y0wwJSGlFKUaBVLMmgWR0ClHS1stTUBdX2UKGgGaAloD0MIw9Zs5SUHMMCUhpRSlGgVSzJoFkdApRzPoC+10HV9lChoBmgJaA9DCAq7KHrgMyXAlIaUUpRoFUsyaBZHQKUeugRsdkt1fZQoaAZoCWgPQwgKZkzBGk8+wJSGlFKUaBVLMmgWR0ClHmVn27FsdX2UKGgGaAloD0MIlq/L8J+2IcCUhpRSlGgVSzJoFkdApR4OfNA1N3V9lChoBmgJaA9DCICCixU1UCPAlIaUUpRoFUsyaBZHQKUdsWYWtU51fZQoaAZoCWgPQwi++njou88ywJSGlFKUaBVLMmgWR0ClH6TVUdaMdX2UKGgGaAloD0MIseB+wAMLIsCUhpRSlGgVSzJoFkdApR9QCGN70HV9lChoBmgJaA9DCKG7JM6K+CPAlIaUUpRoFUsyaBZHQKUe+RoRIz51fZQoaAZoCWgPQwjtgVZgyFItwJSGlFKUaBVLMmgWR0ClHptTcZccdX2UKGgGaAloD0MIPGagMv71J8CUhpRSlGgVSzJoFkdApSCGseXAunV9lChoBmgJaA9DCK1POSaLcyrAlIaUUpRoFUsyaBZHQKUgMiPhhph1fZQoaAZoCWgPQwgoSddMvh0wwJSGlFKUaBVLMmgWR0ClH9tJFspHdX2UKGgGaAloD0MIZLDiVGu9MMCUhpRSlGgVSzJoFkdApR99U0elsXV9lChoBmgJaA9DCNCzWfW58ivAlIaUUpRoFUsyaBZHQKUhbcPe54J1fZQoaAZoCWgPQwjDLLRzmmk8wJSGlFKUaBVLMmgWR0ClIRk078vVdX2UKGgGaAloD0MIzEHQ0aqGJMCUhpRSlGgVSzJoFkdApSDCWJJoTXV9lChoBmgJaA9DCE+UhETari7AlIaUUpRoFUsyaBZHQKUgZJxNqQB1fZQoaAZoCWgPQwgf8wGBzhQkwJSGlFKUaBVLMmgWR0ClIlMN+b3HdX2UKGgGaAloD0MImn0eozxTJMCUhpRSlGgVSzJoFkdApSH+RT0g83V9lChoBmgJaA9DCGHj+nd9Xi3AlIaUUpRoFUsyaBZHQKUhp1Hvtt11fZQoaAZoCWgPQwgnEkw1s642wJSGlFKUaBVLMmgWR0ClIUlw97ngdX2UKGgGaAloD0MI1v85zJebOsCUhpRSlGgVSzJoFkdApSMv7FbV0HV9lChoBmgJaA9DCIqtoGmJBTDAlIaUUpRoFUsyaBZHQKUi2w7kn1F1fZQoaAZoCWgPQwhO7QxTW5ohwJSGlFKUaBVLMmgWR0ClIoQtjCpFdX2UKGgGaAloD0MIK4iBrn2JK8CUhpRSlGgVSzJoFkdApSImR/3Fk3V9lChoBmgJaA9DCEimQ6fnyTLAlIaUUpRoFUsyaBZHQKUkCTX8O091fZQoaAZoCWgPQwhkWTDxR2kmwJSGlFKUaBVLMmgWR0ClI7SDZlFudX2UKGgGaAloD0MI5nYv98kJI8CUhpRSlGgVSzJoFkdApSNduR9w33V9lChoBmgJaA9DCJoiwOldfB/AlIaUUpRoFUsyaBZHQKUi/72tdRl1fZQoaAZoCWgPQwh/iA0WTlojwJSGlFKUaBVLMmgWR0ClJOsERraedX2UKGgGaAloD0MI+FEN+z09M8CUhpRSlGgVSzJoFkdApSSWYYzi0nV9lChoBmgJaA9DCBJsXP+uPzbAlIaUUpRoFUsyaBZHQKUkP4cm0E51fZQoaAZoCWgPQwiF6XsNwXEqwJSGlFKUaBVLMmgWR0ClI+F2eQMhdX2UKGgGaAloD0MIZD+LpUiiNcCUhpRSlGgVSzJoFkdApSXToIOYpnV9lChoBmgJaA9DCPmE7LyN/TXAlIaUUpRoFUsyaBZHQKUlfvUjLSx1fZQoaAZoCWgPQwhSCyWTUx80wJSGlFKUaBVLMmgWR0ClJSgpSaVldX2UKGgGaAloD0MI3WETmbkQIcCUhpRSlGgVSzJoFkdApSTKMtK7I3V9lChoBmgJaA9DCBO6S+KsuDrAlIaUUpRoFUsyaBZHQKUmw3solUp1fZQoaAZoCWgPQwiOAkTBjJ00wJSGlFKUaBVLMmgWR0ClJm7K7qY7dX2UKGgGaAloD0MIyLPLtz50McCUhpRSlGgVSzJoFkdApSYX8XN1Q3V9lChoBmgJaA9DCB2s/3OYxzbAlIaUUpRoFUsyaBZHQKUlujHn2Zl1fZQoaAZoCWgPQwiRDaSLTasYwJSGlFKUaBVLMmgWR0ClJ6EH+qBFdX2UKGgGaAloD0MIH2rbMAqGNsCUhpRSlGgVSzJoFkdApSdMfgaWHHV9lChoBmgJaA9DCPiqlQm/3DbAlIaUUpRoFUsyaBZHQKUm9bgTAWV1fZQoaAZoCWgPQwjZzvdT450jwJSGlFKUaBVLMmgWR0ClJpeo1k1/dX2UKGgGaAloD0MIct2U8lpBKMCUhpRSlGgVSzJoFkdApSjaNZNfxHV9lChoBmgJaA9DCM0GmWTkdDTAlIaUUpRoFUsyaBZHQKUohnoPkJd1fZQoaAZoCWgPQwgXEcXkDfAzwJSGlFKUaBVLMmgWR0ClKDClrM1TdX2UKGgGaAloD0MIstXllIDsNcCUhpRSlGgVSzJoFkdApSfTpeNT+HV9lChoBmgJaA9DCN+KxAQ11DTAlIaUUpRoFUsyaBZHQKUqS+aBqbl1fZQoaAZoCWgPQwjqPZXTnoo3wJSGlFKUaBVLMmgWR0ClKffpljEvdX2UKGgGaAloD0MIVKuvrgr0IsCUhpRSlGgVSzJoFkdApSmi6reZX3V9lChoBmgJaA9DCB7dCIuKUDXAlIaUUpRoFUsyaBZHQKUpReN1hb51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.95, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fef45b98ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fef45b89700>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682901084873447258, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAApKdLPkBQcTzNlMM/pKdLPkBQcTzNlMM/pKdLPkBQcTzNlMM/pKdLPkBQcTzNlMM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKoyUv/nSHL80fYc/cQHZv+Dy7r7eDE8/eGPJv+C9qj9KssM+xLeIPyHdzT7+VOA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACkp0s+QFBxPM2Uwz81imw9KerOO/m/iT2kp0s+QFBxPM2Uwz81imw9KerOO/m/iT2kp0s+QFBxPM2Uwz81imw9KerOO/m/iT2kp0s+QFBxPM2Uwz81imw9KerOO/m/iT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.19888169 0.01472861 1.5279785 ]\n [0.19888169 0.01472861 1.5279785 ]\n [0.19888169 0.01472861 1.5279785 ]\n [0.19888169 0.01472861 1.5279785 ]]", "desired_goal": "[[-1.1605275 -0.6125942 1.0585084 ]\n [-1.6953565 -0.46669674 0.8087901 ]\n [-1.573348 1.3339195 0.3822196 ]\n [ 1.0681081 0.4020777 0.43814844]]", "observation": "[[0.19888169 0.01472861 1.5279785 0.05774899 0.00631454 0.06726069]\n [0.19888169 0.01472861 1.5279785 0.05774899 0.00631454 0.06726069]\n [0.19888169 0.01472861 1.5279785 0.05774899 0.00631454 0.06726069]\n [0.19888169 0.01472861 1.5279785 0.05774899 0.00631454 0.06726069]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbF+5vTdwFz6/rU49E2a/Pcu/dTvqzBk9+T52PfgWXL3gDpM9kLGrvcNIzD3JQ4E+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09051403 0.147889 0.05045867]\n [ 0.09345641 0.00374984 0.03754894]\n [ 0.06011865 -0.05373284 0.07180572]\n [-0.08383477 0.09974816 0.25247028]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIO8eA7PVu8L+UhpRSlIwBbJRLMowBdJRHQKPgmBtDUmV1fZQoaAZoCWgPQwj4+e/Ba5fwv5SGlFKUaBVLMmgWR0Cj4Ee7cwg1dX2UKGgGaAloD0MIxCRcyCP48r+UhpRSlGgVSzJoFkdAo9/v1zySWHV9lChoBmgJaA9DCKRyE7U0t+y/lIaUUpRoFUsyaBZHQKPfmQ04zad1fZQoaAZoCWgPQwiVtyOcFjzsv5SGlFKUaBVLMmgWR0Cj4ilnZkCndX2UKGgGaAloD0MIym/RyVJr6b+UhpRSlGgVSzJoFkdAo+HYoTfzjHV9lChoBmgJaA9DCDF8REyJJOy/lIaUUpRoFUsyaBZHQKPhgP4mCy11fZQoaAZoCWgPQwikNQadEHr4v5SGlFKUaBVLMmgWR0Cj4SsiB5HFdX2UKGgGaAloD0MIDf5+MVuy6r+UhpRSlGgVSzJoFkdAo+MGtjkMkXV9lChoBmgJaA9DCIeHMH4a9+2/lIaUUpRoFUsyaBZHQKPitdJrcj91fZQoaAZoCWgPQwjVeyqnPSXyv5SGlFKUaBVLMmgWR0Cj4l2BjFyadX2UKGgGaAloD0MIt9WsM76v77+UhpRSlGgVSzJoFkdAo+IF94NZvHV9lChoBmgJaA9DCLb3qSo0EO6/lIaUUpRoFUsyaBZHQKPj6sPrfLt1fZQoaAZoCWgPQwixw5j099Lpv5SGlFKUaBVLMmgWR0Cj45nSfDk3dX2UKGgGaAloD0MI3X2OjxZn6L+UhpRSlGgVSzJoFkdAo+NBavA443V9lChoBmgJaA9DCGXHRiBeV+y/lIaUUpRoFUsyaBZHQKPi6fA9FF51fZQoaAZoCWgPQwig/x68dunsv5SGlFKUaBVLMmgWR0Cj5MybH6uXdX2UKGgGaAloD0MIYRvxZDfz8b+UhpRSlGgVSzJoFkdAo+R79If8uXV9lChoBmgJaA9DCJXSM73EWOy/lIaUUpRoFUsyaBZHQKPkI7aIval1fZQoaAZoCWgPQwjBApgycMDyv5SGlFKUaBVLMmgWR0Cj48xZU1htdX2UKGgGaAloD0MIV7WkoxzM87+UhpRSlGgVSzJoFkdAo+WmDL8rJHV9lChoBmgJaA9DCBk74SU4dfK/lIaUUpRoFUsyaBZHQKPlVWT5ftx1fZQoaAZoCWgPQwj8GkmCcEX3v5SGlFKUaBVLMmgWR0Cj5P0Aksz3dX2UKGgGaAloD0MI6BIOvcVD5b+UhpRSlGgVSzJoFkdAo+Slf/m1Y3V9lChoBmgJaA9DCDhqhel7Dey/lIaUUpRoFUsyaBZHQKPmkUFjd591fZQoaAZoCWgPQwgRVmMJa+Psv5SGlFKUaBVLMmgWR0Cj5kCHqNZNdX2UKGgGaAloD0MIrtNIS+Xt8L+UhpRSlGgVSzJoFkdAo+XoLb5/LHV9lChoBmgJaA9DCPJ5xVOPNPS/lIaUUpRoFUsyaBZHQKPlkQlKK511fZQoaAZoCWgPQwgSL0/nitLqv5SGlFKUaBVLMmgWR0Cj525hScbzdX2UKGgGaAloD0MIjliLTwGw7L+UhpRSlGgVSzJoFkdAo+cdsBQvYnV9lChoBmgJaA9DCPEvgsZMou6/lIaUUpRoFUsyaBZHQKPmxXUYsNF1fZQoaAZoCWgPQwhn8zgM5q/nv5SGlFKUaBVLMmgWR0Cj5m4Yzi0fdX2UKGgGaAloD0MIDp4JTRJL5b+UhpRSlGgVSzJoFkdAo+i6G34KyHV9lChoBmgJaA9DCI//AkGAjOm/lIaUUpRoFUsyaBZHQKPoaixmkFh1fZQoaAZoCWgPQwgHB3sTQ3Lzv5SGlFKUaBVLMmgWR0Cj6BJBw++udX2UKGgGaAloD0MIq5ffaTKj87+UhpRSlGgVSzJoFkdAo+e7Ud7v5XV9lChoBmgJaA9DCDgQkgVMoPO/lIaUUpRoFUsyaBZHQKPqF3aBZp11fZQoaAZoCWgPQwiSBOEKKFTmv5SGlFKUaBVLMmgWR0Cj6cdwvQF+dX2UKGgGaAloD0MIGmoUkswq9b+UhpRSlGgVSzJoFkdAo+lvbCaZyHV9lChoBmgJaA9DCESmfAiqBvC/lIaUUpRoFUsyaBZHQKPpGOI68xt1fZQoaAZoCWgPQwja5sb0hCXov5SGlFKUaBVLMmgWR0Cj68D3ueBhdX2UKGgGaAloD0MIDJV/La9c6r+UhpRSlGgVSzJoFkdAo+twvN/vv3V9lChoBmgJaA9DCKkR+pl6Xe6/lIaUUpRoFUsyaBZHQKPrGONHYpV1fZQoaAZoCWgPQwjJWdjTDr/wv5SGlFKUaBVLMmgWR0Cj6sHtv4ucdX2UKGgGaAloD0MIr9AHy9hQ6b+UhpRSlGgVSzJoFkdAo+1W87IT5HV9lChoBmgJaA9DCEyIuaRqe/C/lIaUUpRoFUsyaBZHQKPtB1/Ue+51fZQoaAZoCWgPQwg74SU49QHwv5SGlFKUaBVLMmgWR0Cj7LCPZIxydX2UKGgGaAloD0MILJ0PzxLk7L+UhpRSlGgVSzJoFkdAo+xaAH3UQXV9lChoBmgJaA9DCHpSJjW0Ae6/lIaUUpRoFUsyaBZHQKPvCQEIPbx1fZQoaAZoCWgPQwgk7rH0oYvpv5SGlFKUaBVLMmgWR0Cj7rkEkjX4dX2UKGgGaAloD0MIHvzEAfR79r+UhpRSlGgVSzJoFkdAo+5h24d6s3V9lChoBmgJaA9DCFdD4h5Ln/W/lIaUUpRoFUsyaBZHQKPuC41gpjN1fZQoaAZoCWgPQwgs9SwI5f3yv5SGlFKUaBVLMmgWR0Cj8JEdeY2LdX2UKGgGaAloD0MIfCdmvRjK7b+UhpRSlGgVSzJoFkdAo/BArDqGDnV9lChoBmgJaA9DCHzzGyYaJO6/lIaUUpRoFUsyaBZHQKPv6JBPbfx1fZQoaAZoCWgPQwgNw0fElIjyv5SGlFKUaBVLMmgWR0Cj75G+9Jz1dX2UKGgGaAloD0MIt3pOet946b+UhpRSlGgVSzJoFkdAo/HkHD766HV9lChoBmgJaA9DCHhflQuVv/O/lIaUUpRoFUsyaBZHQKPxk0MPSUl1fZQoaAZoCWgPQwhTCU/o9afmv5SGlFKUaBVLMmgWR0Cj8TqveP7vdX2UKGgGaAloD0MIo3iVtU3x7r+UhpRSlGgVSzJoFkdAo/DjQE6kqXV9lChoBmgJaA9DCAKbc/BM6O+/lIaUUpRoFUsyaBZHQKPyxi0fHPx1fZQoaAZoCWgPQwhFup9TkF/wv5SGlFKUaBVLMmgWR0Cj8nVqFh5PdX2UKGgGaAloD0MIiEm4kEcw8L+UhpRSlGgVSzJoFkdAo/IdGus90XV9lChoBmgJaA9DCCYceouHd+y/lIaUUpRoFUsyaBZHQKPxxZX+2mZ1fZQoaAZoCWgPQwgN4C2QoPjov5SGlFKUaBVLMmgWR0Cj86e49X9zdX2UKGgGaAloD0MIfT7KiAvA7b+UhpRSlGgVSzJoFkdAo/NXGACnxnV9lChoBmgJaA9DCDm536EokPW/lIaUUpRoFUsyaBZHQKPy/tmcvuh1fZQoaAZoCWgPQwhmahK8IU30v5SGlFKUaBVLMmgWR0Cj8qdLpRoAdX2UKGgGaAloD0MIt9WsM76v7b+UhpRSlGgVSzJoFkdAo/STeyiVSnV9lChoBmgJaA9DCOrNqPkqeee/lIaUUpRoFUsyaBZHQKP0Quieumt1fZQoaAZoCWgPQwjIREqzeVzyv5SGlFKUaBVLMmgWR0Cj8+tI065odX2UKGgGaAloD0MIAmcpWU7C8b+UhpRSlGgVSzJoFkdAo/OTz5GjK3V9lChoBmgJaA9DCAIQd/UqcvO/lIaUUpRoFUsyaBZHQKP1idK/VRV1fZQoaAZoCWgPQwhMiLmkajvqv5SGlFKUaBVLMmgWR0Cj9Tj/EOy3dX2UKGgGaAloD0MIF7fRAN5C8L+UhpRSlGgVSzJoFkdAo/Tgjlgc+HV9lChoBmgJaA9DCIuIYvIGGPO/lIaUUpRoFUsyaBZHQKP0iQ176YV1fZQoaAZoCWgPQwhsBrggW5bvv5SGlFKUaBVLMmgWR0Cj9mTfaYeDdX2UKGgGaAloD0MICg+aXfdW5b+UhpRSlGgVSzJoFkdAo/YUH8jzI3V9lChoBmgJaA9DCFcFajF42PC/lIaUUpRoFUsyaBZHQKP1vFdcB2h1fZQoaAZoCWgPQwgnhA66hEPxv5SGlFKUaBVLMmgWR0Cj9WVafSQYdX2UKGgGaAloD0MIrrmj/+Wa8L+UhpRSlGgVSzJoFkdAo/dMfms/6nV9lChoBmgJaA9DCGLWi6GcKPG/lIaUUpRoFUsyaBZHQKP2+5UcXFd1fZQoaAZoCWgPQwjkgcgiTTzlv5SGlFKUaBVLMmgWR0Cj9qM9r434dX2UKGgGaAloD0MI1gEQd/Uq7b+UhpRSlGgVSzJoFkdAo/ZLwOOKfnV9lChoBmgJaA9DCFis4SL39PG/lIaUUpRoFUsyaBZHQKP4R4mCyyF1fZQoaAZoCWgPQwiUNH9MaxP3v5SGlFKUaBVLMmgWR0Cj9/bQLNOedX2UKGgGaAloD0MIaxDmdi937r+UhpRSlGgVSzJoFkdAo/efBxgiNnV9lChoBmgJaA9DCF1r71NVaPC/lIaUUpRoFUsyaBZHQKP3SDEm6Xl1fZQoaAZoCWgPQwgHXi13ZoLyv5SGlFKUaBVLMmgWR0Cj+SagdwNtdX2UKGgGaAloD0MIe2r11VUB9b+UhpRSlGgVSzJoFkdAo/jVz+3pfXV9lChoBmgJaA9DCFZ9rrZi//K/lIaUUpRoFUsyaBZHQKP4fTXrdFh1fZQoaAZoCWgPQwjytPzAVV70v5SGlFKUaBVLMmgWR0Cj+CXeFcptdX2UKGgGaAloD0MITDWzlgIS8L+UhpRSlGgVSzJoFkdAo/oKwY+B6XV9lChoBmgJaA9DCNLEO8CTlu2/lIaUUpRoFUsyaBZHQKP5uhcqvvB1fZQoaAZoCWgPQwiRe7q6YzHzv5SGlFKUaBVLMmgWR0Cj+WGvGIbgdX2UKGgGaAloD0MIP47myMov6b+UhpRSlGgVSzJoFkdAo/kKOLiuMnV9lChoBmgJaA9DCA68Wu7MhOm/lIaUUpRoFUsyaBZHQKP7AAWi1zB1fZQoaAZoCWgPQwgm/FI/b6rqv5SGlFKUaBVLMmgWR0Cj+q8brC3xdX2UKGgGaAloD0MIKc5RR8dV7b+UhpRSlGgVSzJoFkdAo/pWh4+r2nV9lChoBmgJaA9DCO8bX3tmSfO/lIaUUpRoFUsyaBZHQKP5/0K7ZnN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.6144353801617399, "std_reward": 0.2156078210850692, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-01T01:14:04.899984"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3eea43e76426e515be244e3cdd3380d34a42cbb44804a948c40ee7308669a163
|
3 |
size 2387
|