mlp / modeling_mlp.py
wpp02's picture
Upload model
284f08e verified
import torch
from torch import nn
from typing import Optional
from dataclasses import dataclass
from transformers import PreTrainedModel
from .configuration_mlp import MLPConfig
from transformers.utils import ModelOutput
from transformers.activations import ACT2FN
@dataclass
class MLPOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
class MLPPreTrainedModel(PreTrainedModel):
config_class = MLPConfig
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
class MLPModel(MLPPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.act_fn = ACT2FN[config.hidden_act]
iho = [config.input_size, *config.hidden_size, config.output_size]
self.linears = nn.ModuleList([
nn.Linear(iho[i], iho[i+1])
for i in range(config.num_hidden_layers + 1)
])
self.loss_fn = nn.CrossEntropyLoss(reduce="mean")
# Initialize weights and apply final processing
self.post_init()
def forward(self, inputs, labels=None):
for i in range(len(self.linears) - 1):
inputs = self.act_fn(self.linears[i](inputs))
logits = self.linears[-1](inputs)
loss = None
if labels is None:
return ModelOutput(loss=loss, logits=logits)
else:
loss = self.loss_fn(logits, labels)
return ModelOutput(loss=loss, logits=logits)