whisper-small-fc-am / README.md
Bedru's picture
Upload trained model
70d438f verified
metadata
library_name: transformers
license: apache-2.0
base_model: wu-kiot/whisper-small-am-fleurs
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: whisper-small-fc-am
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: am
          split: None
          args: am
        metrics:
          - name: Wer
            type: wer
            value: 62.73062730627307

whisper-small-fc-am

This model is a fine-tuned version of wu-kiot/whisper-small-am-fleurs on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3756
  • Wer: 62.7306

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 150
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2866 1.0 44 0.2855 63.9958
0.1582 2.0 88 0.2958 64.1539
0.0885 3.0 132 0.3311 67.4222
0.0793 4.0 176 0.3700 66.4207
0.0375 5.0 220 0.3756 62.7306

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0