metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:15182
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-m3-retromae
widget:
- source_sentence: Carditis in pediatric patients following foreign serum administration
sentences:
- >-
Four cases of carditis occurring in children and associated with the
administration of a foreign serum.
- >-
Understanding Positive Youth Development in Sport Through the Voices of
Indigenous Youth.
- 'Pericarditis in children. '
- source_sentence: Concept Synthesis
sentences:
- >-
Centeredness in Healthcare: A Concept Synthesis of Family-centered Care,
Person-centered Care and Child-centered Care.
- 'The Power in Concept Mapping! '
- >-
Using propensity scores to estimate the cost-effectiveness of medical
therapies.
- source_sentence: Visual Pathway Mapping
sentences:
- 'The visual connection. '
- 'The "tobacco issue". '
- >-
Elaboration of the Visual Pathways from the Study of War-Related Cranial
Injuries: The Period from the Russo-Japanese War to World War I.
- source_sentence: Cerebral Aneurysm Thrombosis
sentences:
- >-
[A case of spontaneous thrombosis of a cerebral arteriovenous
aneurysm].
- 'Cerebral Sinus Thrombosis. '
- >-
Good clinical practice (GCP) standards: clinical trials in India. An
interview with Dr. Urmila Thatte, Head of Clinical Pharmacology, TN
Medical College & BYL Nair Hospital. Interview by Viveka Roychowdhury.
- source_sentence: Calcineurin inhibitor-sparing regimen
sentences:
- >-
Belatacept-based immunosuppression: A calcineurin inhibitor-sparing
regimen in heart transplant recipients.
- >-
The Outcomes of Cemented Femoral Revisions for Periprosthetic Femoral
Fractures in the Elderly: Comparison with Cementless Stems.
- >-
Neurotoxicity of calcineurin inhibitors: impact and clinical
management.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on BAAI/bge-m3-retromae
results:
- task:
type: triplet
name: Triplet
dataset:
name: triplet dev
type: triplet-dev
metrics:
- type: cosine_accuracy
value: 0.723
name: Cosine Accuracy
SentenceTransformer based on BAAI/bge-m3-retromae
This is a sentence-transformers model finetuned from BAAI/bge-m3-retromae on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3-retromae
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: PeftModelForFeatureExtraction
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Calcineurin inhibitor-sparing regimen',
'Belatacept-based immunosuppression: A calcineurin inhibitor-sparing regimen in heart transplant recipients. ',
'Neurotoxicity of calcineurin inhibitors: impact and clinical management. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
triplet-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.723 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 15,182 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 10.68 tokens
- max: 49 tokens
- min: 6 tokens
- mean: 26.34 tokens
- max: 79 tokens
- min: 4 tokens
- mean: 15.75 tokens
- max: 66 tokens
- Samples:
anchor positive negative Immunogenetic polymorphism
Immunogenetic polymorphism and disease mechanisms in juvenile chronic arthritis.
Immunogenetic model.
Alemtuzumab-induced pancolitis
Pancolitis a novel early complication of Alemtuzumab for MS treatment.
Alemtuzumab in lymphoproliferate disorders.
Intermittent infectiousness
Understanding the effects of intermittent shedding on the transmission of infectious diseases: example of salmonellosis in pigs.
Infectious behaviour.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 1lr_scheduler_type
: cosine_with_restartswarmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: cosine_with_restartslr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | triplet-dev_cosine_accuracy |
---|---|---|---|
0 | 0 | - | 0.543 |
0.0032 | 1 | 3.4406 | - |
0.0064 | 2 | 3.2403 | - |
0.0096 | 3 | 3.3734 | - |
0.0128 | 4 | 3.3858 | - |
0.0160 | 5 | 3.3195 | - |
0.0192 | 6 | 3.2708 | - |
0.0224 | 7 | 3.4507 | - |
0.0256 | 8 | 3.4782 | - |
0.0288 | 9 | 3.2926 | - |
0.0319 | 10 | 3.2744 | - |
0.0351 | 11 | 3.4455 | - |
0.0383 | 12 | 3.3225 | - |
0.0415 | 13 | 3.3568 | - |
0.0447 | 14 | 3.3349 | - |
0.0479 | 15 | 3.2672 | - |
0.0511 | 16 | 3.2584 | - |
0.0543 | 17 | 3.1607 | - |
0.0575 | 18 | 3.1793 | - |
0.0607 | 19 | 3.1924 | - |
0.0639 | 20 | 3.2913 | - |
0.0671 | 21 | 3.2028 | - |
0.0703 | 22 | 3.1448 | - |
0.0735 | 23 | 3.0991 | - |
0.0767 | 24 | 3.1371 | - |
0.0799 | 25 | 3.0089 | - |
0.0831 | 26 | 3.1232 | - |
0.0863 | 27 | 2.8794 | - |
0.0895 | 28 | 2.982 | - |
0.0927 | 29 | 3.231 | - |
0.0958 | 30 | 2.9288 | - |
0.0990 | 31 | 3.0117 | - |
0.1022 | 32 | 2.8717 | - |
0.1054 | 33 | 2.7002 | - |
0.1086 | 34 | 2.6395 | - |
0.1118 | 35 | 2.5087 | - |
0.1150 | 36 | 2.7469 | - |
0.1182 | 37 | 2.6306 | - |
0.1214 | 38 | 2.1149 | - |
0.1246 | 39 | 2.5591 | - |
0.1278 | 40 | 2.0133 | - |
0.1310 | 41 | 2.2863 | - |
0.1342 | 42 | 2.2592 | - |
0.1374 | 43 | 2.1261 | - |
0.1406 | 44 | 2.278 | - |
0.1438 | 45 | 1.7339 | - |
0.1470 | 46 | 1.8337 | - |
0.1502 | 47 | 1.5944 | - |
0.1534 | 48 | 2.0899 | - |
0.1565 | 49 | 1.509 | - |
0.1597 | 50 | 1.8651 | - |
0.1629 | 51 | 2.2858 | - |
0.1661 | 52 | 2.6881 | - |
0.1693 | 53 | 1.7877 | - |
0.1725 | 54 | 1.6374 | - |
0.1757 | 55 | 2.0763 | - |
0.1789 | 56 | 1.7672 | - |
0.1821 | 57 | 1.7913 | - |
0.1853 | 58 | 1.8524 | - |
0.1885 | 59 | 2.2614 | - |
0.1917 | 60 | 1.8058 | - |
0.1949 | 61 | 2.0403 | - |
0.1981 | 62 | 1.2697 | - |
0.2013 | 63 | 1.9523 | - |
0.2045 | 64 | 1.3965 | - |
0.2077 | 65 | 1.5501 | - |
0.2109 | 66 | 1.0785 | - |
0.2141 | 67 | 1.721 | - |
0.2173 | 68 | 1.9049 | - |
0.2204 | 69 | 1.4317 | - |
0.2236 | 70 | 1.905 | - |
0.2268 | 71 | 1.236 | - |
0.2300 | 72 | 1.7312 | - |
0.2332 | 73 | 0.9951 | - |
0.2364 | 74 | 1.5471 | - |
0.2396 | 75 | 1.1289 | - |
0.2428 | 76 | 1.7902 | - |
0.2460 | 77 | 1.2619 | - |
0.2492 | 78 | 1.0043 | - |
0.2524 | 79 | 1.7546 | - |
0.2556 | 80 | 1.8505 | - |
0.2588 | 81 | 1.7437 | - |
0.2620 | 82 | 1.2788 | - |
0.2652 | 83 | 1.438 | - |
0.2684 | 84 | 1.5399 | - |
0.2716 | 85 | 2.1841 | - |
0.2748 | 86 | 1.6834 | - |
0.2780 | 87 | 1.3842 | - |
0.2812 | 88 | 1.619 | - |
0.2843 | 89 | 1.2492 | - |
0.2875 | 90 | 1.3613 | - |
0.2907 | 91 | 1.2457 | - |
0.2939 | 92 | 1.2966 | - |
0.2971 | 93 | 1.3718 | - |
0.3003 | 94 | 1.3675 | - |
0.3035 | 95 | 2.1095 | - |
0.3067 | 96 | 1.6177 | - |
0.3099 | 97 | 1.3287 | - |
0.3131 | 98 | 1.9805 | - |
0.3163 | 99 | 1.3861 | - |
0.3195 | 100 | 1.8392 | 0.622 |
0.3227 | 101 | 1.4698 | - |
0.3259 | 102 | 1.4499 | - |
0.3291 | 103 | 1.5338 | - |
0.3323 | 104 | 1.3867 | - |
0.3355 | 105 | 1.7414 | - |
0.3387 | 106 | 1.5203 | - |
0.3419 | 107 | 1.6059 | - |
0.3450 | 108 | 1.3799 | - |
0.3482 | 109 | 1.5004 | - |
0.3514 | 110 | 1.0175 | - |
0.3546 | 111 | 1.0399 | - |
0.3578 | 112 | 1.6369 | - |
0.3610 | 113 | 1.5692 | - |
0.3642 | 114 | 1.6808 | - |
0.3674 | 115 | 1.4315 | - |
0.3706 | 116 | 0.9854 | - |
0.3738 | 117 | 1.3637 | - |
0.3770 | 118 | 1.3986 | - |
0.3802 | 119 | 1.3848 | - |
0.3834 | 120 | 1.4436 | - |
0.3866 | 121 | 1.0704 | - |
0.3898 | 122 | 1.3788 | - |
0.3930 | 123 | 1.7131 | - |
0.3962 | 124 | 1.5013 | - |
0.3994 | 125 | 1.7377 | - |
0.4026 | 126 | 2.0296 | - |
0.4058 | 127 | 1.2643 | - |
0.4089 | 128 | 1.3647 | - |
0.4121 | 129 | 1.175 | - |
0.4153 | 130 | 1.0797 | - |
0.4185 | 131 | 1.5746 | - |
0.4217 | 132 | 1.0914 | - |
0.4249 | 133 | 1.6672 | - |
0.4281 | 134 | 1.2959 | - |
0.4313 | 135 | 1.5387 | - |
0.4345 | 136 | 1.2571 | - |
0.4377 | 137 | 1.42 | - |
0.4409 | 138 | 1.3452 | - |
0.4441 | 139 | 1.2238 | - |
0.4473 | 140 | 0.9963 | - |
0.4505 | 141 | 1.0326 | - |
0.4537 | 142 | 0.8793 | - |
0.4569 | 143 | 1.2197 | - |
0.4601 | 144 | 1.2992 | - |
0.4633 | 145 | 1.1456 | - |
0.4665 | 146 | 1.6002 | - |
0.4696 | 147 | 1.54 | - |
0.4728 | 148 | 1.2323 | - |
0.4760 | 149 | 1.0184 | - |
0.4792 | 150 | 1.2416 | - |
0.4824 | 151 | 1.1777 | - |
0.4856 | 152 | 1.0964 | - |
0.4888 | 153 | 1.0828 | - |
0.4920 | 154 | 1.3446 | - |
0.4952 | 155 | 0.9454 | - |
0.4984 | 156 | 0.7719 | - |
0.5016 | 157 | 1.003 | - |
0.5048 | 158 | 0.9863 | - |
0.5080 | 159 | 0.9672 | - |
0.5112 | 160 | 1.1432 | - |
0.5144 | 161 | 1.0377 | - |
0.5176 | 162 | 1.102 | - |
0.5208 | 163 | 0.9345 | - |
0.5240 | 164 | 0.9486 | - |
0.5272 | 165 | 1.5389 | - |
0.5304 | 166 | 1.8956 | - |
0.5335 | 167 | 1.0425 | - |
0.5367 | 168 | 1.5296 | - |
0.5399 | 169 | 0.9602 | - |
0.5431 | 170 | 0.9832 | - |
0.5463 | 171 | 1.0982 | - |
0.5495 | 172 | 1.6295 | - |
0.5527 | 173 | 1.3986 | - |
0.5559 | 174 | 1.1721 | - |
0.5591 | 175 | 0.7994 | - |
0.5623 | 176 | 1.5655 | - |
0.5655 | 177 | 1.2068 | - |
0.5687 | 178 | 1.2747 | - |
0.5719 | 179 | 1.0729 | - |
0.5751 | 180 | 0.9977 | - |
0.5783 | 181 | 1.3537 | - |
0.5815 | 182 | 1.0964 | - |
0.5847 | 183 | 0.8029 | - |
0.5879 | 184 | 0.765 | - |
0.5911 | 185 | 1.0457 | - |
0.5942 | 186 | 1.2928 | - |
0.5974 | 187 | 1.2354 | - |
0.6006 | 188 | 1.031 | - |
0.6038 | 189 | 1.2561 | - |
0.6070 | 190 | 1.1676 | - |
0.6102 | 191 | 1.2186 | - |
0.6134 | 192 | 1.1786 | - |
0.6166 | 193 | 1.283 | - |
0.6198 | 194 | 0.8316 | - |
0.6230 | 195 | 1.2239 | - |
0.6262 | 196 | 1.08 | - |
0.6294 | 197 | 1.7637 | - |
0.6326 | 198 | 1.2315 | - |
0.6358 | 199 | 1.5375 | - |
0.6390 | 200 | 1.4388 | 0.73 |
0.6422 | 201 | 1.3918 | - |
0.6454 | 202 | 1.37 | - |
0.6486 | 203 | 1.3753 | - |
0.6518 | 204 | 1.137 | - |
0.6550 | 205 | 1.4457 | - |
0.6581 | 206 | 1.3072 | - |
0.6613 | 207 | 2.0953 | - |
0.6645 | 208 | 1.6811 | - |
0.6677 | 209 | 0.9206 | - |
0.6709 | 210 | 0.9801 | - |
0.6741 | 211 | 0.961 | - |
0.6773 | 212 | 1.386 | - |
0.6805 | 213 | 1.5354 | - |
0.6837 | 214 | 0.6571 | - |
0.6869 | 215 | 1.2631 | - |
0.6901 | 216 | 1.2122 | - |
0.6933 | 217 | 1.6253 | - |
0.6965 | 218 | 1.266 | - |
0.6997 | 219 | 1.7445 | - |
0.7029 | 220 | 1.1527 | - |
0.7061 | 221 | 1.7681 | - |
0.7093 | 222 | 1.4941 | - |
0.7125 | 223 | 1.8236 | - |
0.7157 | 224 | 1.4117 | - |
0.7188 | 225 | 0.7363 | - |
0.7220 | 226 | 1.4519 | - |
0.7252 | 227 | 1.4138 | - |
0.7284 | 228 | 1.0758 | - |
0.7316 | 229 | 1.6275 | - |
0.7348 | 230 | 1.6303 | - |
0.7380 | 231 | 1.4706 | - |
0.7412 | 232 | 0.5958 | - |
0.7444 | 233 | 1.2442 | - |
0.7476 | 234 | 1.3782 | - |
0.7508 | 235 | 1.3971 | - |
0.7540 | 236 | 1.3412 | - |
0.7572 | 237 | 0.9017 | - |
0.7604 | 238 | 1.6336 | - |
0.7636 | 239 | 1.2652 | - |
0.7668 | 240 | 1.0598 | - |
0.7700 | 241 | 1.3082 | - |
0.7732 | 242 | 0.9677 | - |
0.7764 | 243 | 1.2684 | - |
0.7796 | 244 | 1.3539 | - |
0.7827 | 245 | 1.7301 | - |
0.7859 | 246 | 1.2539 | - |
0.7891 | 247 | 1.1073 | - |
0.7923 | 248 | 1.079 | - |
0.7955 | 249 | 1.3488 | - |
0.7987 | 250 | 1.0672 | - |
0.8019 | 251 | 1.4308 | - |
0.8051 | 252 | 1.126 | - |
0.8083 | 253 | 1.131 | - |
0.8115 | 254 | 0.9585 | - |
0.8147 | 255 | 0.9348 | - |
0.8179 | 256 | 1.1288 | - |
0.8211 | 257 | 1.2577 | - |
0.8243 | 258 | 1.286 | - |
0.8275 | 259 | 1.1985 | - |
0.8307 | 260 | 1.2386 | - |
0.8339 | 261 | 1.6239 | - |
0.8371 | 262 | 0.8122 | - |
0.8403 | 263 | 1.42 | - |
0.8435 | 264 | 0.9854 | - |
0.8466 | 265 | 0.9861 | - |
0.8498 | 266 | 1.2226 | - |
0.8530 | 267 | 1.1535 | - |
0.8562 | 268 | 1.634 | - |
0.8594 | 269 | 1.0699 | - |
0.8626 | 270 | 1.2927 | - |
0.8658 | 271 | 1.2269 | - |
0.8690 | 272 | 0.8528 | - |
0.8722 | 273 | 1.6345 | - |
0.8754 | 274 | 1.4596 | - |
0.8786 | 275 | 0.9795 | - |
0.8818 | 276 | 1.1772 | - |
0.8850 | 277 | 1.135 | - |
0.8882 | 278 | 0.994 | - |
0.8914 | 279 | 0.8705 | - |
0.8946 | 280 | 0.976 | - |
0.8978 | 281 | 1.2215 | - |
0.9010 | 282 | 1.4685 | - |
0.9042 | 283 | 1.6724 | - |
0.9073 | 284 | 1.3882 | - |
0.9105 | 285 | 1.2283 | - |
0.9137 | 286 | 1.0334 | - |
0.9169 | 287 | 1.2039 | - |
0.9201 | 288 | 1.0914 | - |
0.9233 | 289 | 1.7033 | - |
0.9265 | 290 | 1.7687 | - |
0.9297 | 291 | 1.2867 | - |
0.9329 | 292 | 1.196 | - |
0.9361 | 293 | 0.9771 | - |
0.9393 | 294 | 1.1878 | - |
0.9425 | 295 | 1.235 | - |
0.9457 | 296 | 1.4398 | - |
0.9489 | 297 | 1.475 | - |
0.9521 | 298 | 1.2632 | - |
0.9553 | 299 | 1.5732 | - |
0.9585 | 300 | 1.0147 | 0.725 |
0.9617 | 301 | 1.0345 | - |
0.9649 | 302 | 1.2582 | - |
0.9681 | 303 | 1.0398 | - |
0.9712 | 304 | 1.3973 | - |
0.9744 | 305 | 1.6701 | - |
0.9776 | 306 | 1.2617 | - |
0.9808 | 307 | 1.5779 | - |
0.9840 | 308 | 1.0839 | - |
0.9872 | 309 | 1.3117 | - |
0.9904 | 310 | 1.6139 | - |
0.9936 | 311 | 1.0128 | - |
0.9968 | 312 | 0.837 | - |
1.0 | 313 | 1.3687 | 0.723 |
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.5.1
- Accelerate: 1.2.1
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}