SentenceTransformer based on answerdotai/ModernBERT-base

This is a sentence-transformers model finetuned from answerdotai/ModernBERT-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: answerdotai/ModernBERT-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'EHL tendon reconstruction',
    'A Combined Surgical Approach for Extensor Hallucis Longus Reconstruction: Two Case Reports. ',
    'Flexor tendon reconstruction. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.887

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 10,053 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 4 tokens
    • mean: 8.86 tokens
    • max: 34 tokens
    • min: 4 tokens
    • mean: 21.84 tokens
    • max: 62 tokens
    • min: 3 tokens
    • mean: 13.65 tokens
    • max: 50 tokens
  • Samples:
    anchor positive negative
    COM-induced secretome changes in U937 monocytes Characterization of calcium oxalate crystal-induced changes in the secretome of U937 human monocytes. Monocytes.
    Metamaterials Sound attenuation optimization using metaporous materials tuned on exceptional points. Metamaterials: A cat's eye for all directions.
    Pediatric Parasitology Parasitic infections among school age children 6 to 11-years-of-age in the Eastern province. [DIALOGUE ON PEDIATRIC PARASITOLOGY].
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 0.0002
  • num_train_epochs: 2
  • lr_scheduler_type: cosine_with_restarts
  • warmup_ratio: 0.1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0002
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss triplet-dev_cosine_accuracy
0 0 - 0.457
0.0189 1 5.2934 -
0.0377 2 5.2413 -
0.0566 3 4.9969 -
0.0755 4 4.5579 -
0.0943 5 3.9145 -
0.1132 6 3.3775 -
0.1321 7 2.8787 -
0.1509 8 3.0147 -
0.1698 9 2.7166 -
0.1887 10 2.7875 -
0.2075 11 2.3848 -
0.2264 12 2.1921 -
0.2453 13 1.7009 -
0.2642 14 1.7649 -
0.2830 15 1.7948 -
0.3019 16 1.5384 -
0.3208 17 1.6039 -
0.3396 18 1.3364 -
0.3585 19 1.3852 -
0.3774 20 1.2427 -
0.3962 21 1.3216 -
0.4151 22 1.4202 -
0.4340 23 1.2754 -
0.4528 24 1.281 -
0.4717 25 1.1709 0.815
0.4906 26 1.2363 -
0.5094 27 1.2169 -
0.5283 28 1.1495 -
0.5472 29 1.0066 -
0.5660 30 1.0478 -
0.5849 31 1.1511 -
0.6038 32 0.9992 -
0.6226 33 1.095 -
0.6415 34 1.1699 -
0.6604 35 0.9866 -
0.6792 36 1.1303 -
0.6981 37 1.1126 -
0.7170 38 0.889 -
0.7358 39 1.0355 -
0.7547 40 1.0129 -
0.7736 41 1.118 -
0.7925 42 0.8494 -
0.8113 43 1.0829 -
0.8302 44 0.8751 -
0.8491 45 0.8115 -
0.8679 46 0.8579 -
0.8868 47 1.1111 -
0.9057 48 0.9032 -
0.9245 49 1.0394 -
0.9434 50 0.9691 0.862
0.9623 51 1.023 -
0.9811 52 0.9465 -
1.0 53 0.6713 -
1.0189 54 0.9773 -
1.0377 55 0.8693 -
1.0566 56 0.7187 -
1.0755 57 0.805 -
1.0943 58 0.728 -
1.1132 59 1.0967 -
1.1321 60 0.7036 -
1.1509 61 0.8213 -
1.1698 62 0.57 -
1.1887 63 0.7006 -
1.2075 64 0.5091 -
1.2264 65 0.5758 -
1.2453 66 0.4484 -
1.2642 67 0.397 -
1.2830 68 0.6172 -
1.3019 69 0.513 -
1.3208 70 0.4447 -
1.3396 71 0.3205 -
1.3585 72 0.5881 -
1.3774 73 0.2543 -
1.3962 74 0.3648 -
1.4151 75 0.4849 0.876
1.4340 76 0.3455 -
1.4528 77 0.3424 -
1.4717 78 0.224 -
1.4906 79 0.18 -
1.5094 80 0.2255 -
1.5283 81 0.3024 -
1.5472 82 0.1835 -
1.5660 83 0.1946 -
1.5849 84 0.1958 -
1.6038 85 0.1568 -
1.6226 86 0.1626 -
1.6415 87 0.1774 -
1.6604 88 0.1934 -
1.6792 89 0.2426 -
1.6981 90 0.2958 -
1.7170 91 0.1606 -
1.7358 92 0.2281 -
1.7547 93 0.1786 -
1.7736 94 0.2241 -
1.7925 95 0.1909 -
1.8113 96 0.236 -
1.8302 97 0.1332 -
1.8491 98 0.1247 -
1.8679 99 0.156 -
1.8868 100 0.2152 0.889
1.9057 101 0.1549 -
1.9245 102 0.2226 -
1.9434 103 0.21 -
1.9623 104 0.2139 -
1.9811 105 0.1864 -
2.0 106 0.0719 0.887

Framework Versions

  • Python: 3.12.3
  • Sentence Transformers: 3.3.1
  • Transformers: 4.48.0.dev0
  • PyTorch: 2.5.1
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
484
Safetensors
Model size
149M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for wwydmanski/modernbert-pubmed-v0.1

Finetuned
(164)
this model

Evaluation results