dpo-selective-alpaca

This model is a fine-tuned version of PKU-Alignment/alpaca-7b-reproduced on the PKU-Alignment/PKU-SafeRLHF dataset. It achieves the following results on the evaluation set:

  • Loss: 4659.3857
  • Rewards/chosen: -0.2274
  • Rewards/rejected: -0.2645
  • Rewards/accuracies: 0.6342
  • Rewards/margins: 0.0372
  • Rewards/safe Rewards: -0.2254
  • Rewards/unsafe Rewards: -0.2253
  • Logps/rejected: -174.8009
  • Logps/chosen: -202.5513
  • Logits/rejected: -1.7296
  • Logits/chosen: -1.5835

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Rewards/safe Rewards Rewards/unsafe Rewards Logps/rejected Logps/chosen Logits/rejected Logits/chosen
4842.2766 0.11 500 4952.8877 0.0166 0.0096 0.6573 0.0070 0.0166 0.0165 -147.3908 -178.1579 -1.7834 -1.6386
4764.3852 0.22 1000 4865.9209 -0.0099 -0.0282 0.6644 0.0184 -0.0094 -0.0098 -151.1701 -180.8021 -1.7281 -1.5780
4814.1586 0.32 1500 4783.4697 -0.1011 -0.1298 0.6566 0.0286 -0.1003 -0.1009 -161.3237 -189.9300 -1.7085 -1.5581
4693.2395 0.43 2000 4735.1978 -0.1597 -0.1926 0.6480 0.0329 -0.1583 -0.1588 -167.6019 -195.7835 -1.7080 -1.5598
4747.273 0.54 2500 4701.7651 -0.1978 -0.2321 0.6416 0.0344 -0.1960 -0.1962 -171.5614 -199.5948 -1.7166 -1.5693
4464.0027 0.65 3000 4681.6167 -0.2061 -0.2411 0.6356 0.0350 -0.2041 -0.2043 -172.4578 -200.4294 -1.7240 -1.5768
4613.8953 0.75 3500 4667.7300 -0.2201 -0.2561 0.6333 0.0360 -0.2182 -0.2182 -173.9565 -201.8304 -1.7289 -1.5822
4642.2859 0.86 4000 4661.8745 -0.2258 -0.2627 0.6336 0.0369 -0.2238 -0.2238 -174.6188 -202.3950 -1.7298 -1.5833
4747.2375 0.97 4500 4659.3687 -0.2266 -0.2638 0.6363 0.0372 -0.2246 -0.2245 -174.7243 -202.4745 -1.7302 -1.5838

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2
  • Datasets 2.14.6
  • Tokenizers 0.15.0
Downloads last month
10
Safetensors
Model size
6.74B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for wxzhang/dpo-selective-alpaca

Finetuned
(2)
this model

Dataset used to train wxzhang/dpo-selective-alpaca