This is the output of the unit 1 section of the RL course.
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +24 -24
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +4 -4
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 268.44 +/- 22.37
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fca7e293a30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fca7e293ac0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fca7e293b50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fca7e293be0>", "_build": "<function ActorCriticPolicy._build at 0x7fca7e293c70>", "forward": "<function ActorCriticPolicy.forward at 0x7fca7e293d00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fca7e293d90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fca7e293e20>", "_predict": "<function ActorCriticPolicy._predict at 0x7fca7e293eb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fca7e293f40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fca7e288040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fca7e2880d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fca7e433f00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705057797206911850, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANokt72TgMA/NuVCv5eufT5BlGk9zXjzPQAAAAAAAAAAjUTNvURvvz8L9/e+AvShvLNoSz1qBgo+AAAAAAAAAAAN3sk97089PvrKZ72nSJe/dw65PhN/gD4AAAAAAAAAADMxdzzOe7A/GGubPiEKmL5pI+C8dba/vQAAAAAAAAAA5iZfPr1ZBz/nyw8/1piHv46JGL/YcZe+AAAAAAAAAABgTMU+G4CoPYtNID8zdaG/dG/4vihzub0AAAAAAAAAANZ/lL6lPJo/bQXsvqpALb+ypRO7LgoDPgAAAAAAAAAAAHRSvPpfrz/CmRG+VXpivt8KUjvwSQI8AAAAAAAAAAD6YY++icsKP9Q0K79wi5S/kypQPur3xz0AAAAAAAAAAO2BED5AgrM/RYlWP4TFmL3lvE++EzhlvgAAAAAAAAAAmqkUPZ6Yuj8Cuh0/zbuSPjaBRr1L3y6+AAAAAAAAAADAw5y9Q5sfPy16Xr6xw5y/aZTUPuP4Tz4AAAAAAAAAAGbPYj0jm7I/w5UIPgHJcL5vv0I9Pq5oPgAAAAAAAAAArWS0PtH0bD+ARUY/WRNGv2W4AL/R5jG+AAAAAAAAAACztmC+SHOQP7oNRb/J/xa/St7mPb7AmTsAAAAAAAAAACeBdL8BsEU/PFA+vzTthr86NrO+kV6KvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwDnW/336AOKMAWyUS2KMAXSUR0B+cM4NqgyudX2UKGgGR8Bnz00SAYpEaAdLYGgIR0B+cQnPVurIdX2UKGgGR8BbmTeoDPnkaAdLYWgIR0B+cT6ciGFjdX2UKGgGR8BPuwazeGfxaAdLSGgIR0B+ce2Yv38GdX2UKGgGR8BZ6YhIOH32aAdLTGgIR0B+clBiTdLydX2UKGgGR8Byk7tx+8XfaAdLa2gIR0B+coidJ8OTdX2UKGgGR8BdVd4eLehxaAdLWGgIR0B+ctVU+9rXdX2UKGgGR8BdKrc0tRNzaAdLWGgIR0B+cr5BTn7pdX2UKGgGR8BocbA57w8XaAdLYWgIR0B+cybLEDQrdX2UKGgGR8BiM4D3dsSCaAdLX2gIR0B+cxxgiNbUdX2UKGgGR8BfZpAMUh3aaAdLg2gIR0B+c4iu+yqudX2UKGgGR8BgG2VzIV/MaAdLYGgIR0B+c1NRFZxJdX2UKGgGR8BgYzD4xk/baAdLY2gIR0B+dK24NI9UdX2UKGgGR8B3MEhMajveaAdLemgIR0B+dKg7HQyAdX2UKGgGR8BUZ18G9pRGaAdLWWgIR0B+dMO8TSLJdX2UKGgGR8BVXhjjJdSmaAdLSmgIR0B+dQ+GGmDUdX2UKGgGR8BYLvatcObzaAdLSmgIR0B+dXwgDA8CdX2UKGgGR8B3/z0lJHy3aAdLZmgIR0B+db642CNCdX2UKGgGR8Bi4pB9kSVXaAdLQGgIR0B+dlC4SYgJdX2UKGgGR8By9v1QIldDaAdLWWgIR0B+dvMpw0fpdX2UKGgGR8BnX5DCxeLOaAdLQWgIR0B+dr1pTMq0dX2UKGgGR8BcFRsQ/X5GaAdLVGgIR0B+d0GdI5HVdX2UKGgGR8BlnapLmITHaAdLRWgIR0B+d28yvcJudX2UKGgGR8BlRn7SApazaAdLVWgIR0B+eAnCwbEQdX2UKGgGR8B6bCnIhhYvaAdLiGgIR0B+eO8kD6nBdX2UKGgGR8BTvGPcSGrTaAdLS2gIR0B+eRRVIZqEdX2UKGgGR8BRFpwCKaXsaAdLP2gIR0B+eTZQHiWFdX2UKGgGR8BnRztVrAP/aAdLbmgIR0B+ebcWTHKfdX2UKGgGR8BvQw60Y0l7aAdLgmgIR0B+emZ+hGpddX2UKGgGR8BrBHh/Aj6faAdLkGgIR0B+erIDHOrydX2UKGgGR8BjaDsD4gzQaAdLS2gIR0B+etOwgTysdX2UKGgGR8BnxzBdld1MaAdLYWgIR0B+e5PuXu3MdX2UKGgGR8BolP1jAi3YaAdLVGgIR0B+e+kBS1mbdX2UKGgGR8BikD0e2d/baAdLfGgIR0B+fBANXo1UdX2UKGgGR8B0ccJWvKU3aAdLVWgIR0B+fH8VHnU2dX2UKGgGR8ByREKu0TlDaAdLgWgIR0B+fHUKArhBdX2UKGgGR8BeXmFrVOKwaAdLUGgIR0B+fOEkB0ZFdX2UKGgGR8BQqA0Kqn3taAdLhWgIR0B+fPwMH8jzdX2UKGgGR8BiSFfoicG1aAdLTGgIR0B+fZuQ6p5vdX2UKGgGR8Anu71ZkkKNaAdLamgIR0B+fdBgNPP+dX2UKGgGR8BW/CaiKziTaAdLQmgIR0B+fk1m8M/hdX2UKGgGR8BxW+XJHRTkaAdLYGgIR0B+fpx1gYxddX2UKGgGR8B6Ic6+36RAaAdLYWgIR0B+fu9alk6LdX2UKGgGR8Bn4/jU/fO2aAdLjmgIR0B+f3ASFoL5dX2UKGgGR8BsB24y44IbaAdLVmgIR0B+f79Q40djdX2UKGgGR8BmkfscABDHaAdLUWgIR0B+f5jgAIY4dX2UKGgGR8BZEdSQ5myxaAdLPmgIR0B+gAT+NtIkdX2UKGgGR8BhPl1r6+FlaAdLZ2gIR0B+f8kKNQ0odX2UKGgGR8Bi+SSvC/GmaAdLQmgIR0B+f9Wq94/vdX2UKGgGR8BpADdrO7g9aAdLVGgIR0B+gZLxqfvndX2UKGgGR8Bz3EQd0aIfaAdLYmgIR0B+gW1kUbkwdX2UKGgGR8BkUba7EpAlaAdLTGgIR0B+ghenhsIndX2UKGgGR8BjK/2Xb/OuaAdLcmgIR0B+ghIe5nUUdX2UKGgGR8BgG/NA1NxmaAdLPGgIR0B+glF6Rhc8dX2UKGgGR8BjLE7r9l3AaAdLYGgIR0B+gmcz67/XdX2UKGgGR8BZF5xWDHwPaAdLSWgIR0B+gnMJQcghdX2UKGgGR8BXr/Dxb0OFaAdLSmgIR0B+gsfMfRu1dX2UKGgGR8BYltPk7wKCaAdLXmgIR0B+guqMm4RVdX2UKGgGR8BepWyTpxFRaAdLc2gIR0B+gu2F36hydX2UKGgGR8BePG/i5uqFaAdLTmgIR0B+hGpMpPRBdX2UKGgGR8BwesgxJul5aAdLUmgIR0B+hOnIhhYvdX2UKGgGR8BV+UGiYb84aAdLYGgIR0B+hSIInjQzdX2UKGgGR8BZTnOW0JF9aAdLVmgIR0B+hOl0o0AMdX2UKGgGR8BxoLjebd8BaAdLWmgIR0B+hPe1rqMWdX2UKGgGR8BZB4kVvddnaAdLYWgIR0B+hYK+i8FqdX2UKGgGR8BZqK7EpAlfaAdLQGgIR0B+hkleF+NMdX2UKGgGR8BSSarBCUosaAdLQ2gIR0B+hn7CSA6NdX2UKGgGR8BjzQhW5paiaAdLc2gIR0B+iHH1e0HAdX2UKGgGR8BX0u0Xxe9jaAdLaGgIR0B+iLdZaFEidX2UKGgGR8BZAGnwXqJNaAdLQ2gIR0B+iPTspobodX2UKGgGR8CBUYaKk2xZaAdLbmgIR0B+iNp8F6iTdX2UKGgGR8B3+T8l5WzXaAdLdGgIR0B+iUKjSG8FdX2UKGgGR8AzKCL/CIk7aAdLf2gIR0B+iWL74zrNdX2UKGgGR8BRJyuloDgZaAdLR2gIR0B+iUUDdP+GdX2UKGgGR8A/lgvDgqEwaAdLYWgIR0B+iktL+PzWdX2UKGgGR8BuzD9l2/zraAdLW2gIR0B+iptpEhJRdX2UKGgGR8BohbtzCDVZaAdLfGgIR0B+ipHBk7OndX2UKGgGR8BhvO4wyqMnaAdLSWgIR0B+isg2ZRbbdX2UKGgGR8By286U7jkuaAdLfWgIR0B+iqnR9gF5dX2UKGgGR8BoCBu89Oh1aAdLgmgIR0B+is2gnMMadX2UKGgGR8Bcf/PTodMkaAdLY2gIR0B+itz7uUlidX2UKGgGR8B0hFOO801qaAdLXGgIR0B+jAYO2AoYdX2UKGgGR8Bj22xlg+hXaAdLcmgIR0B+jD+717IDdX2UKGgGR8BSWw6ZH/cWaAdLQmgIR0B+jLhFVktmdX2UKGgGR8BcyFme18b8aAdLRmgIR0B+jH50r9VFdX2UKGgGR8BLIXAmAskIaAdLQWgIR0B+jQcPvrnldX2UKGgGR8Bq4W23KB/aaAdLUGgIR0B+jbcAR02cdX2UKGgGR8BixehEjPfLaAdLWmgIR0B+jc3FUADJdX2UKGgGR8BUpWYF7laKaAdLRmgIR0B+jpjDsMRZdX2UKGgGR8BecDPSlWOqaAdLQ2gIR0B+joDYAbQ1dX2UKGgGR8BlaSqS5iEyaAdLbWgIR0B+jvOMVDa5dX2UKGgGR8BjXG5WilBQaAdLUGgIR0B+jwtbs4T9dX2UKGgGR8Bbc3X2/SH/aAdLd2gIR0B+j+1og3cYdX2UKGgGR8BQkXuuzQeFaAdLQGgIR0B+kBHTZxrBdX2UKGgGR8BaEZyEL6UJaAdLa2gIR0B+kJWEK3NLdX2UKGgGR8B9D8NsnAqNaAdLamgIR0B+kLY/Vy3kdX2UKGgGR8BVAm/FirksaAdLT2gIR0B+kTOt4iX6dX2UKGgGR8BxluIacZtOaAdLdmgIR0B+kTVAiV0LdX2UKGgGR8Bn7YHxBmf5aAdLX2gIR0B+kWeHzpX7dX2UKGgGR8BjHRNM495haAdLT2gIR0B+kYxdpqREdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a27b1bd8310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a27b1bd83a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a27b1bd8430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a27b1bd84c0>", "_build": "<function ActorCriticPolicy._build at 0x7a27b1bd8550>", "forward": "<function ActorCriticPolicy.forward at 0x7a27b1bd85e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a27b1bd8670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a27b1bd8700>", "_predict": "<function ActorCriticPolicy._predict at 0x7a27b1bd8790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a27b1bd8820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a27b1bd88b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a27b1bd8940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a27b1b7d540>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1730113108077920097, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJ7gnr5fsFU/zCwUvs2wpL66+Hq+HqlIPQAAAAAAAAAAM4eHvFz/aboyiLg6vlQaNtHMajvi7tW5AACAPwAAgD/NoRa9ri2eukS/IjqThhY1+Cw3uoOrO7kAAIA/AACAP83XvLz25F26D9QiO6U9IDdc47W5GzQENgAAgD8AAIA/ZiasuSncW7rF2Gm7FQWaNX2rC7tfk4k6AACAPwAAgD+a7Zu7SP2VuiZAVDqVoUu2kl0YOz4WdbkAAIA/AACAPwB62Tx7ko+6EMKku4KRGTgH9Rm6wMqGNQAAgD8AAIA/AK2CPPZEPbovqyG5q05LMlwWT7s2Szw4AACAPwAAgD9VuYm+Jr+3PqQYiT7pEwq+Wl6Qvd0wgzwAAAAAAAAAACZr573Yg7g+WMXHPXtmXb4cwEC9tY9hPQAAAAAAAAAAs0BCvcOBX7r5xkE7AO+utYVwxzlyJWC6AACAPwAAgD8zM0i8SKuEujFNITpubcS1vYxhuIcsObkAAIA/AACAP+Zylz1Syq8/zhEyPxDDkr7m9Ci7/kUwPgAAAAAAAAAAgEhvPSlYZLpGlTO6r1lAtViozDl2/FI5AACAPwAAAACaIVu87BnluVpJ7jprkLw1/LQuOjJeC7oAAIA/AACAP7MKtz0pYGi6KCN7Ojm4izV6NLM583KNuQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQAf5ckdFSMAWyUTegDjAF0lEdAkC8wwPAfuHV9lChoBkdAZfJoOhCdBmgHTegDaAhHQJA5xQXQ+ll1fZQoaAZHQGUEeXqqwQloB03oA2gIR0CQP6DB/I8ydX2UKGgGR0Bmtzzyz5XVaAdN6ANoCEdAkEcJdOZb6nV9lChoBkdAYQepd8iOemgHTegDaAhHQJBIEo8ZDRd1fZQoaAZHQF8G/FirksBoB03oA2gIR0CQSDaaCtihdX2UKGgGR0BjS7XBguyvaAdN6ANoCEdAkFDEY8+zMXV9lChoBkdAXdmzyBkI5mgHTegDaAhHQJBSoFA3T/h1fZQoaAZHQGW4TU7Sy+poB03oA2gIR0CQaQkUsWfsdX2UKGgGR0BjB2g3974SaAdN6ANoCEdAkG1y0jTrmnV9lChoBkdAZ+LXcxj8UGgHTegDaAhHQJBwLSZ0CBB1fZQoaAZHQGYn4YBNmDloB03oA2gIR0CQcboESuhcdX2UKGgGR0Bnd9As052haAdN6ANoCEdAkHRyExqO93V9lChoBkdAY1zpwCKaX2gHTegDaAhHQJB5aNIbwSd1fZQoaAZHQGIhAPd2xIJoB03oA2gIR0CQfRz1bqyGdX2UKGgGR0BjTryJ9AooaAdN6ANoCEdAkH5HpnpSrHV9lChoBkdAYuCKRdQfp2gHTegDaAhHQJCC/Hn2ZiN1fZQoaAZHQGKOw9zOopBoB03oA2gIR0CQii8rqdH2dX2UKGgGR0Bf3MRUWEbpaAdN6ANoCEdAkI9T3IuGsXV9lChoBkdAZe4SxJNCaGgHTegDaAhHQJCWauwHJLd1fZQoaAZHQGUCx2bG3nZoB03oA2gIR0CQl5gLZzxPdX2UKGgGR0BmMnJDE3sHaAdN6ANoCEdAkJfEYj0L+nV9lChoBkdAZKBRMvh60WgHTegDaAhHQJChzwUg0TF1fZQoaAZHQGEYs/pt78hoB03oA2gIR0CQo2hJyyUtdX2UKGgGR0BkCORvFWGRaAdN6ANoCEdAkLe6a1Cw8nV9lChoBkdAYgQaLn9vTGgHTegDaAhHQJC6nCxeLNx1fZQoaAZHQGVYn3L3bmFoB03oA2gIR0CQvS1pj+aSdX2UKGgGR0Bm0eBczImxaAdN6ANoCEdAkL6SW7e2u3V9lChoBkdAZOZmNipeeGgHTegDaAhHQJDBAUIsyzp1fZQoaAZHQGM8GzSkTHtoB03oA2gIR0CQxYc0tRNzdX2UKGgGR0BmFNeIEbHZaAdN6ANoCEdAkMkSrPt2LnV9lChoBkdAR4GAmReTmmgHS+9oCEdAkMm8ry1/lXV9lChoBkdAZrbBTGYKIGgHTegDaAhHQJDKcj1PFeh1fZQoaAZHQGPEZwfhddFoB03oA2gIR0CQ0EWo3rD7dX2UKGgGR0BmjWEf1YhdaAdN6ANoCEdAkNewG0NSZXV9lChoBkdAZFj0KZ2IPGgHTegDaAhHQJDcK9alk6N1fZQoaAZHQHDl3irDIiloB00uAmgIR0CQ4Nqm0mdBdX2UKGgGR0BlOdOoHcDbaAdN6ANoCEdAkOJj1oQFtHV9lChoBkdAZtif6GgzxmgHTegDaAhHQJDjMD5j6N51fZQoaAZHQGI99a2WpqBoB03oA2gIR0CQ401+y7f6dX2UKGgGR0Bh5Bz3h4t6aAdN6ANoCEdAkOoDspoboHV9lChoBkdAYZ9s2vStvGgHTegDaAhHQJDrbnV5KOF1fZQoaAZHQGY6Kmbb1yxoB03oA2gIR0CRANodMj/udX2UKGgGR0BjpR9gF5fMaAdN6ANoCEdAkQSNMPBi1HV9lChoBkdAZKCzLwF1S2gHTegDaAhHQJEJFJTVDrt1fZQoaAZHQGhOpoTPBzpoB03oA2gIR0CREBL7GecydX2UKGgGR0Bn9soF3Y+TaAdN6ANoCEdAkRPK6jFhonV9lChoBkdAY853ueBg/mgHTegDaAhHQJEUbEYO2Ap1fZQoaAZHQGYKe2VmjCZoB03oA2gIR0CRFP4vN/vwdX2UKGgGR0Be8S2x6fJ4aAdN6ANoCEdAkRmlRYRuj3V9lChoBkdAX+2Z5Rjz7WgHTegDaAhHQJEglm29cr11fZQoaAZHQGeu7jcVQANoB03oA2gIR0CRJY/7zkIYdX2UKGgGR0BQc+IRAbADaAdNCgFoCEdAkSj/+n62v3V9lChoBkdAZEX69kBjnWgHTegDaAhHQJEq2iSJTER1fZQoaAZHQGMpN3np0OpoB03oA2gIR0CRLH3QUpNLdX2UKGgGR0BeG3aN+9amaAdN6ANoCEdAkS1ZQxesxXV9lChoBkdAYyV3sXzlLmgHTegDaAhHQJEtd6u4gA91fZQoaAZHQGAJEnLJSzhoB03oA2gIR0CRNqyrgflqdX2UKGgGR0BksY/mknCwaAdN6ANoCEdAkTjIQnQY13V9lChoBkfABSsZpBX0XmgHS9FoCEdAkTt68UVSGnV9lChoBkdAYIk9Htnf22gHTegDaAhHQJE8W3Ytg8d1fZQoaAZHQGNDiwbEP2BoB03oA2gIR0CRUH7GNrCWdX2UKGgGR0BkbzmbLEDRaAdN6ANoCEdAkVRSq6vq1XV9lChoBkdAZC4hfShJy2gHTegDaAhHQJFb0phF3IN1fZQoaAZHQG7QfxMFlkJoB01uAmgIR0CRX0IDHOrydX2UKGgGR0BnAtHJ9y93aAdN6ANoCEdAkV97GFSKnHV9lChoBkdAaB/6XSjQA2gHTegDaAhHQJFgG/Efkmx1fZQoaAZHQF7mdnTRYzVoB03oA2gIR0CRYJoIv8IidX2UKGgGR0BwM5n5BTn8aAdNeAJoCEdAkWFRacI7eXV9lChoBkdAZayp5NXYDmgHTegDaAhHQJFuMXZXdTJ1fZQoaAZHQGTRBHkLhJloB03oA2gIR0CRcxPQv6CUdX2UKGgGR0Bw1537k4m1aAdNKAJoCEdAkXTlCCz1LHV9lChoBkdAcBZhiLEUCmgHTZ0BaAhHQJF3/5GjKxN1fZQoaAZHQGI8aLwWnCRoB03oA2gIR0CReUMF2V3VdX2UKGgGR0BlWWcpb2UTaAdN6ANoCEdAkXodzr/sFHV9lChoBkdAbHdt/nW8RWgHTRcCaAhHQJF/i3XqZ+h1fZQoaAZHQGYzNC7btZ5oB03oA2gIR0CRgO0uDjBEdX2UKGgGR0BlZd7Y02tMaAdN6ANoCEdAkYJKeCkGinV9lChoBkdAZ0CAOrhismgHTegDaAhHQJGETps41gp1fZQoaAZHQG48wz1schloB02QAmgIR0CRhNL2HtWudX2UKGgGR0BmB3SUkfLcaAdN6ANoCEdAkYUNyPuG9HV9lChoBkdAYETK28Zk1GgHTegDaAhHQJGZdMVUMod1fZQoaAZHQEUoUSIxgzBoB0vmaAhHQJGhHpTuOS51fZQoaAZHQGDYsHjZL7JoB03oA2gIR0CRpigeii7DdX2UKGgGR0Bmnxsdkrf+aAdN6ANoCEdAkanLiZOSGXV9lChoBkdAbIYThYNiIGgHTZUCaAhHQJGqc8IRh+h1fZQoaAZHQGDXzQmeDnNoB03oA2gIR0CRq6dMTN+tdX2UKGgGR0BzAiEg4ffXaAdNmgJoCEdAka2DkZJkG3V9lChoBkdAbWy3juKGcmgHTbcBaAhHQJGvLbeuV5d1fZQoaAZHQHAiiwjdHlRoB01MAWgIR0CRshMPjGT+dX2UKGgGR0BmosIiTt9haAdN6ANoCEdAkbSgMMI/q3V9lChoBkdAZOXUExIrfGgHTegDaAhHQJG4YODrZ8N1fZQoaAZHQHFBHww0waloB01bAWgIR0CRuZ5fMOf/dX2UKGgGR0BsaDLjghr4aAdN3QJoCEdAkbuOP3i71HV9lChoBkdAY4FCHh0heWgHTegDaAhHQJG9Z8QZn+R1fZQoaAZHQGSLA4ffXPJoB03oA2gIR0CRviXr+o9+dX2UKGgGR0BnlLP2PDHfaAdN6ANoCEdAkcLfUONHY3V9lChoBkdAZNK7cO9WZWgHTegDaAhHQJHEDcwg1WN1fZQoaAZHQGNVTZHuqm1oB03oA2gIR0CRx6j4HoovdX2UKGgGR0BnW0C1Z1V6aAdN6ANoCEdAkcqnMlkYoHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ebf9015850be7679be7be2515d10764f855bb24b3e581003cd00b1cd580fc214
|
3 |
+
size 148020
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,20 +41,20 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
-
":serialized:": "
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
@@ -69,7 +69,7 @@
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
-
":serialized:": "
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
@@ -87,13 +87,13 @@
|
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
-
":serialized:": "
|
98 |
}
|
99 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a27b1bd8310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a27b1bd83a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a27b1bd8430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a27b1bd84c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a27b1bd8550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a27b1bd85e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a27b1bd8670>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a27b1bd8700>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a27b1bd8790>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a27b1bd8820>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a27b1bd88b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a27b1bd8940>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a27b1b7d540>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1730113108077920097,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJ7gnr5fsFU/zCwUvs2wpL66+Hq+HqlIPQAAAAAAAAAAM4eHvFz/aboyiLg6vlQaNtHMajvi7tW5AACAPwAAgD/NoRa9ri2eukS/IjqThhY1+Cw3uoOrO7kAAIA/AACAP83XvLz25F26D9QiO6U9IDdc47W5GzQENgAAgD8AAIA/ZiasuSncW7rF2Gm7FQWaNX2rC7tfk4k6AACAPwAAgD+a7Zu7SP2VuiZAVDqVoUu2kl0YOz4WdbkAAIA/AACAPwB62Tx7ko+6EMKku4KRGTgH9Rm6wMqGNQAAgD8AAIA/AK2CPPZEPbovqyG5q05LMlwWT7s2Szw4AACAPwAAgD9VuYm+Jr+3PqQYiT7pEwq+Wl6Qvd0wgzwAAAAAAAAAACZr573Yg7g+WMXHPXtmXb4cwEC9tY9hPQAAAAAAAAAAs0BCvcOBX7r5xkE7AO+utYVwxzlyJWC6AACAPwAAgD8zM0i8SKuEujFNITpubcS1vYxhuIcsObkAAIA/AACAP+Zylz1Syq8/zhEyPxDDkr7m9Ci7/kUwPgAAAAAAAAAAgEhvPSlYZLpGlTO6r1lAtViozDl2/FI5AACAPwAAAACaIVu87BnluVpJ7jprkLw1/LQuOjJeC7oAAIA/AACAP7MKtz0pYGi6KCN7Ojm4izV6NLM583KNuQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQAf5ckdFSMAWyUTegDjAF0lEdAkC8wwPAfuHV9lChoBkdAZfJoOhCdBmgHTegDaAhHQJA5xQXQ+ll1fZQoaAZHQGUEeXqqwQloB03oA2gIR0CQP6DB/I8ydX2UKGgGR0Bmtzzyz5XVaAdN6ANoCEdAkEcJdOZb6nV9lChoBkdAYQepd8iOemgHTegDaAhHQJBIEo8ZDRd1fZQoaAZHQF8G/FirksBoB03oA2gIR0CQSDaaCtihdX2UKGgGR0BjS7XBguyvaAdN6ANoCEdAkFDEY8+zMXV9lChoBkdAXdmzyBkI5mgHTegDaAhHQJBSoFA3T/h1fZQoaAZHQGW4TU7Sy+poB03oA2gIR0CQaQkUsWfsdX2UKGgGR0BjB2g3974SaAdN6ANoCEdAkG1y0jTrmnV9lChoBkdAZ+LXcxj8UGgHTegDaAhHQJBwLSZ0CBB1fZQoaAZHQGYn4YBNmDloB03oA2gIR0CQcboESuhcdX2UKGgGR0Bnd9As052haAdN6ANoCEdAkHRyExqO93V9lChoBkdAY1zpwCKaX2gHTegDaAhHQJB5aNIbwSd1fZQoaAZHQGIhAPd2xIJoB03oA2gIR0CQfRz1bqyGdX2UKGgGR0BjTryJ9AooaAdN6ANoCEdAkH5HpnpSrHV9lChoBkdAYuCKRdQfp2gHTegDaAhHQJCC/Hn2ZiN1fZQoaAZHQGKOw9zOopBoB03oA2gIR0CQii8rqdH2dX2UKGgGR0Bf3MRUWEbpaAdN6ANoCEdAkI9T3IuGsXV9lChoBkdAZe4SxJNCaGgHTegDaAhHQJCWauwHJLd1fZQoaAZHQGUCx2bG3nZoB03oA2gIR0CQl5gLZzxPdX2UKGgGR0BmMnJDE3sHaAdN6ANoCEdAkJfEYj0L+nV9lChoBkdAZKBRMvh60WgHTegDaAhHQJChzwUg0TF1fZQoaAZHQGEYs/pt78hoB03oA2gIR0CQo2hJyyUtdX2UKGgGR0BkCORvFWGRaAdN6ANoCEdAkLe6a1Cw8nV9lChoBkdAYgQaLn9vTGgHTegDaAhHQJC6nCxeLNx1fZQoaAZHQGVYn3L3bmFoB03oA2gIR0CQvS1pj+aSdX2UKGgGR0Bm0eBczImxaAdN6ANoCEdAkL6SW7e2u3V9lChoBkdAZOZmNipeeGgHTegDaAhHQJDBAUIsyzp1fZQoaAZHQGM8GzSkTHtoB03oA2gIR0CQxYc0tRNzdX2UKGgGR0BmFNeIEbHZaAdN6ANoCEdAkMkSrPt2LnV9lChoBkdAR4GAmReTmmgHS+9oCEdAkMm8ry1/lXV9lChoBkdAZrbBTGYKIGgHTegDaAhHQJDKcj1PFeh1fZQoaAZHQGPEZwfhddFoB03oA2gIR0CQ0EWo3rD7dX2UKGgGR0BmjWEf1YhdaAdN6ANoCEdAkNewG0NSZXV9lChoBkdAZFj0KZ2IPGgHTegDaAhHQJDcK9alk6N1fZQoaAZHQHDl3irDIiloB00uAmgIR0CQ4Nqm0mdBdX2UKGgGR0BlOdOoHcDbaAdN6ANoCEdAkOJj1oQFtHV9lChoBkdAZtif6GgzxmgHTegDaAhHQJDjMD5j6N51fZQoaAZHQGI99a2WpqBoB03oA2gIR0CQ401+y7f6dX2UKGgGR0Bh5Bz3h4t6aAdN6ANoCEdAkOoDspoboHV9lChoBkdAYZ9s2vStvGgHTegDaAhHQJDrbnV5KOF1fZQoaAZHQGY6Kmbb1yxoB03oA2gIR0CRANodMj/udX2UKGgGR0BjpR9gF5fMaAdN6ANoCEdAkQSNMPBi1HV9lChoBkdAZKCzLwF1S2gHTegDaAhHQJEJFJTVDrt1fZQoaAZHQGhOpoTPBzpoB03oA2gIR0CREBL7GecydX2UKGgGR0Bn9soF3Y+TaAdN6ANoCEdAkRPK6jFhonV9lChoBkdAY853ueBg/mgHTegDaAhHQJEUbEYO2Ap1fZQoaAZHQGYKe2VmjCZoB03oA2gIR0CRFP4vN/vwdX2UKGgGR0Be8S2x6fJ4aAdN6ANoCEdAkRmlRYRuj3V9lChoBkdAX+2Z5Rjz7WgHTegDaAhHQJEglm29cr11fZQoaAZHQGeu7jcVQANoB03oA2gIR0CRJY/7zkIYdX2UKGgGR0BQc+IRAbADaAdNCgFoCEdAkSj/+n62v3V9lChoBkdAZEX69kBjnWgHTegDaAhHQJEq2iSJTER1fZQoaAZHQGMpN3np0OpoB03oA2gIR0CRLH3QUpNLdX2UKGgGR0BeG3aN+9amaAdN6ANoCEdAkS1ZQxesxXV9lChoBkdAYyV3sXzlLmgHTegDaAhHQJEtd6u4gA91fZQoaAZHQGAJEnLJSzhoB03oA2gIR0CRNqyrgflqdX2UKGgGR0BksY/mknCwaAdN6ANoCEdAkTjIQnQY13V9lChoBkfABSsZpBX0XmgHS9FoCEdAkTt68UVSGnV9lChoBkdAYIk9Htnf22gHTegDaAhHQJE8W3Ytg8d1fZQoaAZHQGNDiwbEP2BoB03oA2gIR0CRUH7GNrCWdX2UKGgGR0BkbzmbLEDRaAdN6ANoCEdAkVRSq6vq1XV9lChoBkdAZC4hfShJy2gHTegDaAhHQJFb0phF3IN1fZQoaAZHQG7QfxMFlkJoB01uAmgIR0CRX0IDHOrydX2UKGgGR0BnAtHJ9y93aAdN6ANoCEdAkV97GFSKnHV9lChoBkdAaB/6XSjQA2gHTegDaAhHQJFgG/Efkmx1fZQoaAZHQF7mdnTRYzVoB03oA2gIR0CRYJoIv8IidX2UKGgGR0BwM5n5BTn8aAdNeAJoCEdAkWFRacI7eXV9lChoBkdAZayp5NXYDmgHTegDaAhHQJFuMXZXdTJ1fZQoaAZHQGTRBHkLhJloB03oA2gIR0CRcxPQv6CUdX2UKGgGR0Bw1537k4m1aAdNKAJoCEdAkXTlCCz1LHV9lChoBkdAcBZhiLEUCmgHTZ0BaAhHQJF3/5GjKxN1fZQoaAZHQGI8aLwWnCRoB03oA2gIR0CReUMF2V3VdX2UKGgGR0BlWWcpb2UTaAdN6ANoCEdAkXodzr/sFHV9lChoBkdAbHdt/nW8RWgHTRcCaAhHQJF/i3XqZ+h1fZQoaAZHQGYzNC7btZ5oB03oA2gIR0CRgO0uDjBEdX2UKGgGR0BlZd7Y02tMaAdN6ANoCEdAkYJKeCkGinV9lChoBkdAZ0CAOrhismgHTegDaAhHQJGETps41gp1fZQoaAZHQG48wz1schloB02QAmgIR0CRhNL2HtWudX2UKGgGR0BmB3SUkfLcaAdN6ANoCEdAkYUNyPuG9HV9lChoBkdAYETK28Zk1GgHTegDaAhHQJGZdMVUMod1fZQoaAZHQEUoUSIxgzBoB0vmaAhHQJGhHpTuOS51fZQoaAZHQGDYsHjZL7JoB03oA2gIR0CRpigeii7DdX2UKGgGR0Bmnxsdkrf+aAdN6ANoCEdAkanLiZOSGXV9lChoBkdAbIYThYNiIGgHTZUCaAhHQJGqc8IRh+h1fZQoaAZHQGDXzQmeDnNoB03oA2gIR0CRq6dMTN+tdX2UKGgGR0BzAiEg4ffXaAdNmgJoCEdAka2DkZJkG3V9lChoBkdAbWy3juKGcmgHTbcBaAhHQJGvLbeuV5d1fZQoaAZHQHAiiwjdHlRoB01MAWgIR0CRshMPjGT+dX2UKGgGR0BmosIiTt9haAdN6ANoCEdAkbSgMMI/q3V9lChoBkdAZOXUExIrfGgHTegDaAhHQJG4YODrZ8N1fZQoaAZHQHFBHww0waloB01bAWgIR0CRuZ5fMOf/dX2UKGgGR0BsaDLjghr4aAdN3QJoCEdAkbuOP3i71HV9lChoBkdAY4FCHh0heWgHTegDaAhHQJG9Z8QZn+R1fZQoaAZHQGSLA4ffXPJoB03oA2gIR0CRviXr+o9+dX2UKGgGR0BnlLP2PDHfaAdN6ANoCEdAkcLfUONHY3V9lChoBkdAZNK7cO9WZWgHTegDaAhHQJHEDcwg1WN1fZQoaAZHQGNVTZHuqm1oB03oA2gIR0CRx6j4HoovdX2UKGgGR0BnW0C1Z1V6aAdN6ANoCEdAkcqnMlkYoHVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 248,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
|
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
}
|
99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd181b8ba39a6e8fe4d8e571591d4f4a3c04c237e5783ff72557b768f5ced0c8
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc78da6344642b37e513a4d8d4e0fa29f7a8facbb7085ba919fd27838dcc2344
|
3 |
size 43762
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
- OS: Linux-6.1.
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
-
- PyTorch: 2.
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
-
- Cloudpickle:
|
8 |
- Gymnasium: 0.28.1
|
9 |
- OpenAI Gym: 0.25.2
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.0+cu121
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
- Gymnasium: 0.28.1
|
9 |
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 268.43504790000003, "std_reward": 22.3731025598495, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-28T11:19:03.988917"}
|