deabuse / README.md
wyluilipe's picture
wyluilipe/deabuse
e5c0549 verified
|
raw
history blame
4.36 kB
metadata
base_model: ai-forever/ruT5-base
tags:
  - generated_from_trainer
model-index:
  - name: deabuse
    results: []

deabuse

This model is a fine-tuned version of ai-forever/ruT5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0760

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
5.7858 0.05 400 0.7427
4.3608 0.1 800 0.4047
3.2919 0.15 1200 0.2366
3.2244 0.2 1600 0.2164
3.2491 0.25 2000 0.1757
1.6803 0.3 2400 0.1494
3.2828 0.35 2800 0.1500
3.39 0.4 3200 0.1510
0.0933 0.45 3600 0.1524
3.4757 0.5 4000 0.1423
3.1424 0.55 4400 0.1460
0.9616 0.6 4800 0.1178
2.6271 0.65 5200 0.1178
1.1441 0.7 5600 0.1190
3.018 0.75 6000 0.1136
1.3421 0.8 6400 0.0936
2.3062 0.85 6800 0.0994
2.5594 0.9 7200 0.0945
2.1381 0.95 7600 0.1061
1.0893 1.0 8000 0.1029
0.7525 1.05 8400 0.0978
2.1886 1.1 8800 0.0840
1.9948 1.15 9200 0.0952
0.7933 1.2 9600 0.0871
2.0757 1.25 10000 0.0853
0.6129 1.31 10400 0.0857
0.1338 1.36 10800 0.0936
2.6454 1.41 11200 0.0834
0.4243 1.46 11600 0.0891
0.6615 1.51 12000 0.0885
0.6634 1.56 12400 0.0942
0.5665 1.61 12800 0.0808
0.6661 1.66 13200 0.1021
1.1028 1.71 13600 0.0820
1.5217 1.76 14000 0.0769
0.7644 1.81 14400 0.0771
1.3725 1.86 14800 0.0800
0.846 1.91 15200 0.0788
1.7207 1.96 15600 0.0806
0.9188 2.01 16000 0.0806
1.4303 2.06 16400 0.0814
0.1599 2.11 16800 0.1072
0.1976 2.16 17200 0.0823
0.7077 2.21 17600 0.0830
1.8896 2.26 18000 0.0768
0.6957 2.31 18400 0.0826
0.7827 2.36 18800 0.0802
1.3298 2.41 19200 0.0791
0.2254 2.46 19600 0.0871
1.041 2.51 20000 0.0809
1.5451 2.56 20400 0.0838
1.6318 2.61 20800 0.0801
1.8972 2.66 21200 0.0774
1.8895 2.71 21600 0.0762
0.7721 2.76 22000 0.0740
0.3528 2.81 22400 0.0781
1.325 2.86 22800 0.0770
0.0282 2.91 23200 0.0785
1.6303 2.96 23600 0.0760

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1
  • Datasets 2.16.1
  • Tokenizers 0.15.2