SentenceTransformer based on Supabase/gte-small
This is a sentence-transformers model finetuned from Supabase/gte-small on the all-nli-tr dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Supabase/gte-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: tr
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("x1saint/gte-small-triplet-tr")
# Run inference
sentences = [
'Ve gerçekten, baba haklıydı, oğlu zaten her şeyi tecrübe etmişti, her şeyi denedi ve daha az ilgileniyordu.',
'Oğlu her şeye olan ilgisini kaybediyordu.',
'Baba oğlunun tecrübe için hala çok şey olduğunu biliyordu.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
all-nli-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8552 |
Training Details
Training Dataset
all-nli-tr
- Dataset: all-nli-tr at daeabfb
- Size: 482,091 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 47.48 tokens
- max: 301 tokens
- min: 4 tokens
- mean: 25.16 tokens
- max: 80 tokens
- min: 5 tokens
- mean: 23.67 tokens
- max: 90 tokens
- Samples:
anchor positive negative Mevsim boyunca ve sanırım senin seviyendeyken onları bir sonraki seviyeye düşürürsün. Eğer ebeveyn takımını çağırmaya karar verirlerse Braves üçlü A'dan birini çağırmaya karar verirlerse çifte bir adam onun yerine geçmeye gider ve bekar bir adam gelir.
Eğer insanlar hatırlarsa, bir sonraki seviyeye düşersin.
Hiçbir şeyi hatırlamazlar.
Numaramızdan biri talimatlarınızı birazdan yerine getirecektir.
Ekibimin bir üyesi emirlerinizi büyük bir hassasiyetle yerine getirecektir.
Şu anda boş kimsek yok, bu yüzden sen de harekete geçmelisin.
Bunu nereden biliyorsun? Bütün bunlar yine onların bilgileri.
Bu bilgi onlara ait.
Hiçbir bilgileri yok.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
all-nli-tr
- Dataset: all-nli-tr at daeabfb
- Size: 6,567 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 45.12 tokens
- max: 201 tokens
- min: 7 tokens
- mean: 25.11 tokens
- max: 98 tokens
- min: 5 tokens
- mean: 23.81 tokens
- max: 64 tokens
- Samples:
anchor positive negative Bilemiyorum. Onunla ilgili karışık duygularım var. Bazen ondan hoşlanıyorum ama aynı zamanda birisinin onu dövmesini görmeyi seviyorum.
Çoğunlukla ondan hoşlanıyorum, ama yine de birinin onu dövdüğünü görmekten zevk alıyorum.
O benim favorim ve kimsenin onu yendiğini görmek istemiyorum.
Sen ve arkadaşların burada hoş karşılanmaz, Severn söyledi.
Severn orada insanların hoş karşılanmadığını söyledi.
Severn orada insanların her zaman hoş karşılanacağını söyledi.
Gecenin en aşağısı ne olduğundan emin değilim.
Dün gece ne kadar soğuk oldu bilmiyorum.
Dün gece hava 37 dereceydi.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 64gradient_accumulation_steps
: 4learning_rate
: 1e-05warmup_ratio
: 0.1bf16
: Truedataloader_num_workers
: 4
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | all-nli-dev_cosine_accuracy |
---|---|---|---|---|
0.1327 | 500 | 9.1341 | 1.4261 | 0.7835 |
0.2655 | 1000 | 5.2529 | 1.2543 | 0.7967 |
0.3982 | 1500 | 4.5877 | 1.1583 | 0.8119 |
0.5310 | 2000 | 4.229 | 1.0974 | 0.8171 |
0.6637 | 2500 | 4.0158 | 1.0592 | 0.8238 |
0.7965 | 3000 | 3.7869 | 1.0161 | 0.8310 |
0.9292 | 3500 | 3.6862 | 0.9897 | 0.8372 |
1.0619 | 4000 | 3.5519 | 0.9751 | 0.8406 |
1.1946 | 4500 | 3.3986 | 0.9596 | 0.8421 |
1.3274 | 5000 | 3.3479 | 0.9377 | 0.8435 |
1.4601 | 5500 | 3.3104 | 0.9296 | 0.8465 |
1.5929 | 6000 | 3.2255 | 0.9178 | 0.8467 |
1.7256 | 6500 | 3.1998 | 0.9077 | 0.8514 |
1.8584 | 7000 | 3.1491 | 0.9017 | 0.8496 |
1.9911 | 7500 | 3.1337 | 0.8955 | 0.8511 |
2.1237 | 8000 | 3.052 | 0.8885 | 0.8526 |
2.2565 | 8500 | 2.9998 | 0.8836 | 0.8524 |
2.3892 | 9000 | 2.9835 | 0.8794 | 0.8517 |
2.5220 | 9500 | 2.9941 | 0.8778 | 0.8532 |
2.6547 | 10000 | 2.9704 | 0.8744 | 0.8555 |
2.7875 | 10500 | 2.9731 | 0.8723 | 0.8541 |
2.9202 | 11000 | 2.9221 | 0.8717 | 0.8552 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for x1saint/gte-small-triplet-tr
Base model
Supabase/gte-small