quran-to-text-base / README.md
xLeonSTES's picture
Update README.md
9c10c64 verified
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: whisper-base-ar-quran
    results: []
base_model:
  - openai/whisper-base
pipeline_tag: automatic-speech-recognition
library_name: transformers

quran-to-text-base

This model is a fine-tuned version of openai/whisper-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0839
  • Wer: 5.7544

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1092 0.05 250 0.1969 13.3890
0.0361 0.1 500 0.1583 10.6375
0.0192 0.15 750 0.1109 8.8468
0.0144 0.2 1000 0.1157 7.9754
0.008 0.25 1250 0.1000 7.5360
0.0048 1.03 1500 0.0933 6.8227
0.0113 1.08 1750 0.0955 6.9638
0.0209 1.13 2000 0.0824 6.3586
0.0043 1.18 2250 0.0830 6.3444
0.002 1.23 2500 0.1015 6.3025
0.0013 2.01 2750 0.0863 6.0639
0.0014 2.06 3000 0.0905 6.0213
0.0018 2.11 3250 0.0864 6.0293
0.0008 2.16 3500 0.0887 5.9308
0.0029 2.21 3750 0.0777 5.9159
0.0022 2.26 4000 0.0847 5.8749
0.0005 3.05 4250 0.0827 5.8352
0.0003 3.1 4500 0.0826 5.7800
0.0006 3.15 4750 0.0833 5.7625
0.0003 3.2 5000 0.0839 5.7544

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2