File size: 2,848 Bytes
e94d61e a276450 e94d61e a276450 e94d61e a276450 e94d61e 24a784e e94d61e a276450 e94d61e 24a784e e94d61e a276450 e94d61e 24a784e a276450 24a784e e94d61e a276450 e94d61e a276450 e94d61e a276450 e94d61e 9aefc3a e94d61e b43bcdc e94d61e c005abf 257c7d5 e94d61e b43bcdc e94d61e c005abf e94d61e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
language:
- eu
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
base_model: openai/whisper-medium
model-index:
- name: Whisper Small Basque
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_13_0 eu
type: mozilla-foundation/common_voice_13_0
config: eu
split: test
args: eu
metrics:
- type: wer
value: 12.839726193851513
name: Wer
---
# Whisper Small Basque
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_13_0 eu dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2287
- Wer: 12.8397
If you need to use this model with [whisper.cpp](https://github.com/ggerganov/whisper.cpp), you can download the ggml file: [ggml-medium-eu.bin](https://huggingface.co/xezpeleta/whisper-medium-eu/blob/main/ggml-medium.eu.bin)
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 8000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.4415 | 0.06 | 500 | 0.5092 | 36.9699 |
| 0.4206 | 0.12 | 1000 | 0.4144 | 28.3365 |
| 0.272 | 0.19 | 1500 | 0.3554 | 24.7438 |
| 0.2681 | 0.25 | 2000 | 0.3271 | 22.1414 |
| 0.2099 | 0.31 | 2500 | 0.2973 | 19.5350 |
| 0.2283 | 0.38 | 3000 | 0.2760 | 18.5042 |
| 0.1477 | 1.03 | 3500 | 0.2637 | 17.1493 |
| 0.1008 | 1.09 | 4000 | 0.2592 | 16.3939 |
| 0.0866 | 1.15 | 4500 | 0.2561 | 15.8066 |
| 0.0915 | 1.21 | 5000 | 0.2411 | 15.0310 |
| 0.0803 | 1.28 | 5500 | 0.2330 | 14.7616 |
| 0.0674 | 1.34 | 6000 | 0.2325 | 13.8462 |
| 0.0679 | 1.4 | 6500 | 0.2299 | 13.5809 |
| 0.027 | 2.05 | 7000 | 0.2304 | 13.3805 |
| 0.0231 | 2.11 | 7500 | 0.2287 | 12.8397 |
| 0.0285 | 2.18 | 8000 | 0.2304 | 12.8883 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|