|
--- |
|
license: mit |
|
base_model: beomi/KcELECTRA-base-v2022 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: KcELECTRA-base-v2022-KEmoFact-0925 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# KcELECTRA-base-v2022-KEmoFact-0925 |
|
|
|
This model is a fine-tuned version of [beomi/KcELECTRA-base-v2022](https://huggingface.co/beomi/KcELECTRA-base-v2022) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3810 |
|
- Precision: 0.2344 |
|
- Recall: 0.2824 |
|
- F1: 0.2562 |
|
- Accuracy: 0.7161 |
|
- Jaccard Scores: 0.6958 |
|
- Cls Accuracy: 0.6348 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Jaccard Scores | Cls Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:--------------:|:------------:| |
|
| No log | 1.0 | 414 | 1.0972 | 0.2070 | 0.2510 | 0.2269 | 0.7237 | 0.6675 | 0.6273 | |
|
| 0.4703 | 2.0 | 828 | 1.1390 | 0.2038 | 0.2510 | 0.2249 | 0.7180 | 0.6755 | 0.6195 | |
|
| 0.3437 | 3.0 | 1242 | 1.2184 | 0.1977 | 0.2510 | 0.2212 | 0.7121 | 0.6756 | 0.6340 | |
|
| 0.2478 | 4.0 | 1656 | 1.2727 | 0.2035 | 0.2572 | 0.2272 | 0.7167 | 0.6779 | 0.6407 | |
|
| 0.1769 | 5.0 | 2070 | 1.3348 | 0.2098 | 0.2572 | 0.2311 | 0.7209 | 0.6772 | 0.6407 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|