xoyeop's picture
Model save
ef3352b
|
raw
history blame
2.22 kB
metadata
license: mit
base_model: beomi/KcELECTRA-base-v2022
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: KcELECTRA-base-v2022-KEmoFact-0925
    results: []

KcELECTRA-base-v2022-KEmoFact-0925

This model is a fine-tuned version of beomi/KcELECTRA-base-v2022 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0671
  • Precision: 0.2272
  • Recall: 0.2813
  • F1: 0.2514
  • Accuracy: 0.7244
  • Jaccard Scores: 0.7016
  • Cls Accuracy: 0.6433

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Jaccard Scores Cls Accuracy
No log 1.0 414 1.0860 0.1223 0.1235 0.1229 0.7113 0.5185 0.4574
1.405 2.0 828 0.9584 0.1670 0.2076 0.1851 0.7275 0.6476 0.6001
0.8557 3.0 1242 0.9666 0.1887 0.2312 0.2078 0.7286 0.6656 0.6134
0.6123 4.0 1656 1.0142 0.2122 0.2538 0.2311 0.7321 0.6794 0.6346
0.4582 5.0 2070 1.0391 0.2069 0.2549 0.2284 0.7260 0.6787 0.6358

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3