|
--- |
|
library_name: peft |
|
datasets: |
|
- liuhaotian/LLaVA-Pretrain |
|
- liuhaotian/LLaVA-Instruct-150K |
|
pipeline_tag: visual-question-answering |
|
--- |
|
|
|
<div align="center"> |
|
<img src="https://github.com/InternLM/lmdeploy/assets/36994684/0cf8d00f-e86b-40ba-9b54-dc8f1bc6c8d8" width="600"/> |
|
|
|
|
|
[![Generic badge](https://img.shields.io/badge/GitHub-%20XTuner-black.svg)](https://github.com/InternLM/xtuner) |
|
|
|
|
|
</div> |
|
|
|
## Model |
|
|
|
llava-v1.5-7b-xtuner is a LLaVA model fine-tuned from [Vicuna-7B-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) and [CLIP-ViT-Large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) with [LLaVA-Pretrain](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) and [LLaVA-Instruct](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K) by [XTuner](https://github.com/InternLM/xtuner). |
|
|
|
|
|
## Quickstart |
|
|
|
### Installation |
|
|
|
```shell |
|
pip install -U 'xtuner[deepspeed]' |
|
``` |
|
|
|
### Chat |
|
|
|
```shell |
|
xtuner chat lmsys/vicuna-7b-v1.5 \ |
|
--visual-encoder openai/clip-vit-large-patch14-336 \ |
|
--llava xtuner/llava-v1.5-7b-xtuner \ |
|
--prompt-template vicuna \ |
|
--image $IMAGE_PATH |
|
``` |
|
|
|
### Training |
|
|
|
1. Alignment module pretraining (saved by default in `./work_dirs/`) |
|
|
|
```shell |
|
NPROC_PER_NODE=8 xtuner train llava_vicuna_7b_v15_clip_vit_large_p14_336_e1_gpu8_pretrain --deepspeed deepspeed_zero2 |
|
``` |
|
|
|
2. Instruction following fine-tuning (saved by default in `./work_dirs/`) |
|
|
|
```shell |
|
NPROC_PER_NODE=8 xtuner train llava_vicuna_7b_v15_qlora_clip_vit_large_p14_336_lora_e1_gpu8_finetune --deepspeed deepspeed_zero2 |
|
``` |
|
|
|
|
|
### MMBench Evaluation |
|
|
|
XTuner integrates the MMBench evaluation, and you can perform evaluations with the following command! |
|
|
|
```bash |
|
xtuner mmbench lmsys/vicuna-7b-v1.5 \ |
|
--visual-encoder openai/clip-vit-large-patch14-336 \ |
|
--llava xtuner/llava-v1.5-7b-xtuner \ |
|
--prompt-template vicuna \ |
|
--data-path $MMBENCH_DATA_PATH \ |
|
--work-dir $RESULT_PATH |
|
``` |
|
|
|
After the evaluation is completed, if it's a development set, it will directly print out the results; If it's a test set, you need to submit `mmbench_result.xlsx` to the official MMBench for final evaluation to obtain precision results! |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@misc{2023xtuner, |
|
title={XTuner: A Toolkit for Efficiently Fine-tuning LLM}, |
|
author={XTuner Contributors}, |
|
howpublished = {\url{https://github.com/InternLM/xtuner}}, |
|
year={2023} |
|
} |
|
``` |
|
|