FT-Frisian-10m / README.md
xuliu15's picture
End of training
65402ab verified
|
raw
history blame
2.38 kB
metadata
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_6_1
metrics:
  - wer
model-index:
  - name: Whisper Small Frisian 10m
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 6.1
          type: mozilla-foundation/common_voice_6_1
          args: 'config: frisian, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 64.63375512386384

Whisper Small Frisian 10m

This model is a fine-tuned version of openai/whisper-small on the Common Voice 6.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6644
  • Wer: 64.6338

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.0563 6.6667 100 2.2740 83.8603
0.9188 13.3333 200 1.7748 76.3393
0.4133 20.0 300 1.6575 69.3138
0.1672 26.6667 400 1.6334 67.2750
0.0603 33.3333 500 1.6320 66.4160
0.0245 40.0 600 1.6434 65.3573
0.0138 46.6667 700 1.6523 64.7229
0.0104 53.3333 800 1.6592 64.0634
0.0089 60.0 900 1.6633 64.6551
0.0083 66.6667 1000 1.6644 64.6338

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1