|
```python |
|
from optimum.neuron import NeuronModelForCausalLM |
|
from transformers import AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
tokenizer.pad_token_id = tokenizer.eos_token_id if tokenizer.pad_token_id is None else tokenizer.pad_token_id |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(**inputs,max_new_tokens=max_new_tokens,do_sample=True,use_cache=True,temperature=0.7,top_k=50,top_p=0.9) |
|
outputs = outputs[0, inputs.input_ids.size(-1):] |
|
response = tokenizer.decode(outputs, skip_special_tokens=True) |