SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2 on the bps-query-publication-similarity-pairs dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstat-semantic-search-mpnet-base-v3-sts")
# Run inference
sentences = [
'Sistem neraca lingkungan dan ekonomi Indonesia, -',
'Sistem Terintegrasi Neraca Lingkungan dan Ekonomi Indonesia -',
'Distribusi Perdagangan Komoditas Minyak Goreng Indonesia ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
allstat-semantic-dev
andallstat-semantic-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | allstat-semantic-dev | allstat-semantic-test |
---|---|---|
pearson_cosine | 0.9672 | 0.9644 |
spearman_cosine | 0.8714 | 0.8572 |
Training Details
Training Dataset
bps-query-publication-similarity-pairs
- Dataset: bps-query-publication-similarity-pairs at cf2836e
- Size: 44,668 training samples
- Columns:
query
,doc_title
, andscore
- Approximate statistics based on the first 1000 samples:
query doc_title score type string string float details - min: 4 tokens
- mean: 9.66 tokens
- max: 36 tokens
- min: 4 tokens
- mean: 11.88 tokens
- max: 49 tokens
- min: 0.0
- mean: 0.49
- max: 1.0
- Samples:
query doc_title score Tren bisnis perikanan di Indonesia
Statistik Perusahaan Perikanan
0.88
Statistik APBDes
Statistik Perusahaan Peternakan Ternak Besar dan Kecil
0.29
Laporan Indikator Konstruksi semester 1
Statistik Air Bersih -
0.25
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
bps-query-publication-similarity-pairs
- Dataset: bps-query-publication-similarity-pairs at cf2836e
- Size: 2,482 evaluation samples
- Columns:
query
,doc_title
, andscore
- Approximate statistics based on the first 1000 samples:
query doc_title score type string string float details - min: 4 tokens
- mean: 9.55 tokens
- max: 31 tokens
- min: 4 tokens
- mean: 11.62 tokens
- max: 36 tokens
- min: 0.0
- mean: 0.54
- max: 1.0
- Samples:
query doc_title score Dampak COVID-19 pada usaha mikro kecil
Statistik Penyedia Makan Minum
0.2
Sektor konstruksi Aceh, data UMKM
Profil Usaha Konstruksi Perorangan Provinsi Aceh,
0.88
SP2010: Statistik lansia Sumatera Selatan
Statistik Penduduk Lanjut Usia Provinsi Sumatera Selatan -Hasil Sensus Penduduk
0.81
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | allstat-semantic-dev_spearman_cosine | allstat-semantic-test_spearman_cosine |
---|---|---|---|---|---|
0.0358 | 100 | 0.0498 | 0.0311 | 0.7840 | - |
0.0716 | 200 | 0.0294 | 0.0245 | 0.7970 | - |
0.1074 | 300 | 0.0241 | 0.0210 | 0.8040 | - |
0.1433 | 400 | 0.0215 | 0.0192 | 0.8078 | - |
0.1791 | 500 | 0.0208 | 0.0200 | 0.8091 | - |
0.2149 | 600 | 0.0208 | 0.0183 | 0.8183 | - |
0.2507 | 700 | 0.0216 | 0.0176 | 0.8177 | - |
0.2865 | 800 | 0.02 | 0.0177 | 0.8192 | - |
0.3223 | 900 | 0.0183 | 0.0180 | 0.8107 | - |
0.3582 | 1000 | 0.0197 | 0.0190 | 0.8058 | - |
0.3940 | 1100 | 0.0199 | 0.0176 | 0.8182 | - |
0.4298 | 1200 | 0.0207 | 0.0193 | 0.8097 | - |
0.4656 | 1300 | 0.0186 | 0.0190 | 0.8088 | - |
0.5014 | 1400 | 0.0197 | 0.0178 | 0.8122 | - |
0.5372 | 1500 | 0.0179 | 0.0177 | 0.8161 | - |
0.5731 | 1600 | 0.0171 | 0.0169 | 0.8197 | - |
0.6089 | 1700 | 0.0178 | 0.0162 | 0.8152 | - |
0.6447 | 1800 | 0.0152 | 0.0162 | 0.8234 | - |
0.6805 | 1900 | 0.0171 | 0.0162 | 0.8187 | - |
0.7163 | 2000 | 0.0179 | 0.0154 | 0.8194 | - |
0.7521 | 2100 | 0.0164 | 0.0158 | 0.8126 | - |
0.7880 | 2200 | 0.016 | 0.0149 | 0.8254 | - |
0.8238 | 2300 | 0.0164 | 0.0149 | 0.8193 | - |
0.8596 | 2400 | 0.0151 | 0.0139 | 0.8297 | - |
0.8954 | 2500 | 0.0151 | 0.0142 | 0.8306 | - |
0.9312 | 2600 | 0.0136 | 0.0143 | 0.8315 | - |
0.9670 | 2700 | 0.0157 | 0.0135 | 0.8342 | - |
1.0029 | 2800 | 0.0133 | 0.0135 | 0.8330 | - |
1.0387 | 2900 | 0.0116 | 0.0133 | 0.8369 | - |
1.0745 | 3000 | 0.0106 | 0.0132 | 0.8357 | - |
1.1103 | 3100 | 0.0113 | 0.0126 | 0.8395 | - |
1.1461 | 3200 | 0.0123 | 0.0131 | 0.8362 | - |
1.1819 | 3300 | 0.0117 | 0.0142 | 0.8289 | - |
1.2178 | 3400 | 0.0133 | 0.0135 | 0.8322 | - |
1.2536 | 3500 | 0.0113 | 0.0129 | 0.8358 | - |
1.2894 | 3600 | 0.0109 | 0.0132 | 0.8352 | - |
1.3252 | 3700 | 0.0107 | 0.0122 | 0.8394 | - |
1.3610 | 3800 | 0.0125 | 0.0128 | 0.8364 | - |
1.3968 | 3900 | 0.012 | 0.0126 | 0.8342 | - |
1.4327 | 4000 | 0.0123 | 0.0128 | 0.8364 | - |
1.4685 | 4100 | 0.0109 | 0.0127 | 0.8369 | - |
1.5043 | 4200 | 0.0108 | 0.0125 | 0.8385 | - |
1.5401 | 4300 | 0.011 | 0.0124 | 0.8416 | - |
1.5759 | 4400 | 0.0104 | 0.0120 | 0.8455 | - |
1.6117 | 4500 | 0.0107 | 0.0114 | 0.8498 | - |
1.6476 | 4600 | 0.0095 | 0.0114 | 0.8485 | - |
1.6834 | 4700 | 0.0114 | 0.0118 | 0.8457 | - |
1.7192 | 4800 | 0.0101 | 0.0118 | 0.8417 | - |
1.7550 | 4900 | 0.0127 | 0.0113 | 0.8466 | - |
1.7908 | 5000 | 0.0112 | 0.0114 | 0.8466 | - |
1.8266 | 5100 | 0.0095 | 0.0109 | 0.8485 | - |
1.8625 | 5200 | 0.0107 | 0.0114 | 0.8465 | - |
1.8983 | 5300 | 0.0113 | 0.0115 | 0.8454 | - |
1.9341 | 5400 | 0.0107 | 0.0116 | 0.8473 | - |
1.9699 | 5500 | 0.0102 | 0.0111 | 0.8526 | - |
2.0057 | 5600 | 0.0097 | 0.0109 | 0.8542 | - |
2.0415 | 5700 | 0.0082 | 0.0106 | 0.8534 | - |
2.0774 | 5800 | 0.0069 | 0.0107 | 0.8551 | - |
2.1132 | 5900 | 0.0077 | 0.0107 | 0.8533 | - |
2.1490 | 6000 | 0.0076 | 0.0109 | 0.8532 | - |
2.1848 | 6100 | 0.0071 | 0.0107 | 0.8515 | - |
2.2206 | 6200 | 0.0075 | 0.0104 | 0.8563 | - |
2.2564 | 6300 | 0.0074 | 0.0102 | 0.8567 | - |
2.2923 | 6400 | 0.0083 | 0.0105 | 0.8567 | - |
2.3281 | 6500 | 0.0075 | 0.0107 | 0.8515 | - |
2.3639 | 6600 | 0.007 | 0.0103 | 0.8546 | - |
2.3997 | 6700 | 0.0079 | 0.0103 | 0.8559 | - |
2.4355 | 6800 | 0.0072 | 0.0102 | 0.8550 | - |
2.4713 | 6900 | 0.0069 | 0.0098 | 0.8618 | - |
2.5072 | 7000 | 0.0082 | 0.0099 | 0.8611 | - |
2.5430 | 7100 | 0.0067 | 0.0101 | 0.8596 | - |
2.5788 | 7200 | 0.0062 | 0.0097 | 0.8593 | - |
2.6146 | 7300 | 0.0074 | 0.0094 | 0.8622 | - |
2.6504 | 7400 | 0.008 | 0.0093 | 0.8624 | - |
2.6862 | 7500 | 0.0066 | 0.0097 | 0.8610 | - |
2.7221 | 7600 | 0.0066 | 0.0098 | 0.8616 | - |
2.7579 | 7700 | 0.0066 | 0.0097 | 0.8593 | - |
2.7937 | 7800 | 0.0076 | 0.0099 | 0.8582 | - |
2.8295 | 7900 | 0.0078 | 0.0094 | 0.8625 | - |
2.8653 | 8000 | 0.0075 | 0.0092 | 0.8639 | - |
2.9011 | 8100 | 0.0077 | 0.0092 | 0.8620 | - |
2.9370 | 8200 | 0.0067 | 0.0092 | 0.8643 | - |
2.9728 | 8300 | 0.0069 | 0.0095 | 0.8625 | - |
3.0086 | 8400 | 0.0067 | 0.0095 | 0.8632 | - |
3.0444 | 8500 | 0.0051 | 0.0093 | 0.8652 | - |
3.0802 | 8600 | 0.0046 | 0.0094 | 0.8662 | - |
3.1160 | 8700 | 0.0046 | 0.0094 | 0.8669 | - |
3.1519 | 8800 | 0.0047 | 0.0095 | 0.8671 | - |
3.1877 | 8900 | 0.0049 | 0.0091 | 0.8688 | - |
3.2235 | 9000 | 0.0048 | 0.0090 | 0.8688 | - |
3.2593 | 9100 | 0.0047 | 0.0092 | 0.8697 | - |
3.2951 | 9200 | 0.0058 | 0.0092 | 0.8686 | - |
3.3309 | 9300 | 0.005 | 0.0091 | 0.8681 | - |
3.3668 | 9400 | 0.0049 | 0.0090 | 0.8694 | - |
3.4026 | 9500 | 0.0051 | 0.0091 | 0.8670 | - |
3.4384 | 9600 | 0.0048 | 0.0090 | 0.8666 | - |
3.4742 | 9700 | 0.0047 | 0.0089 | 0.8672 | - |
3.5100 | 9800 | 0.0046 | 0.0091 | 0.8658 | - |
3.5458 | 9900 | 0.0051 | 0.0090 | 0.8658 | - |
3.5817 | 10000 | 0.0054 | 0.0089 | 0.8681 | - |
3.6175 | 10100 | 0.0049 | 0.0089 | 0.8679 | - |
3.6533 | 10200 | 0.0042 | 0.0089 | 0.8681 | - |
3.6891 | 10300 | 0.0049 | 0.0089 | 0.8684 | - |
3.7249 | 10400 | 0.0046 | 0.0088 | 0.8692 | - |
3.7607 | 10500 | 0.0048 | 0.0088 | 0.8691 | - |
3.7966 | 10600 | 0.0042 | 0.0088 | 0.8704 | - |
3.8324 | 10700 | 0.0049 | 0.0088 | 0.8702 | - |
3.8682 | 10800 | 0.0045 | 0.0088 | 0.8709 | - |
3.9040 | 10900 | 0.0047 | 0.0088 | 0.8712 | - |
3.9398 | 11000 | 0.0046 | 0.0088 | 0.8711 | - |
3.9756 | 11100 | 0.0045 | 0.0088 | 0.8714 | - |
4.0 | 11168 | - | - | - | 0.8572 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.2.2+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for yahyaabd/allstat-semantic-search-mpnet-base-v3-sts
Dataset used to train yahyaabd/allstat-semantic-search-mpnet-base-v3-sts
Evaluation results
- Pearson Cosine on allstat semantic devself-reported0.967
- Spearman Cosine on allstat semantic devself-reported0.871
- Pearson Cosine on allstat semantic testself-reported0.964
- Spearman Cosine on allstat semantic testself-reported0.857