SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2 on the bps-query-publication-similarity-pairs dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstat-semantic-search-paraphrase-mpnet-base-v2-2-sts")
# Run inference
sentences = [
'KONDISI SOSIAL EKONOMI INDONESIA BULAN MEI',
'Perkembangan Beberapa Indikator Utama Sosial-Ekonomi Indonesia Edisi Mei',
'Ekspor Menurut Moda Transportasi',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
allstat-semantic-dev
andallstat-semantic-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | allstat-semantic-dev | allstat-semantic-test |
---|---|---|
pearson_cosine | 0.99 | 0.9894 |
spearman_cosine | 0.9525 | 0.9518 |
Training Details
Training Dataset
bps-query-publication-similarity-pairs
- Dataset: bps-query-publication-similarity-pairs at dc8407f
- Size: 154,111 training samples
- Columns:
query
,doc_title
, andscore
- Approximate statistics based on the first 1000 samples:
query doc_title score type string string float details - min: 4 tokens
- mean: 11.15 tokens
- max: 60 tokens
- min: 4 tokens
- mean: 11.25 tokens
- max: 41 tokens
- min: 0.0
- mean: 0.51
- max: 1.0
- Samples:
query doc_title score LAPORKAN PASAR TENAGA KERJA INDONESIA BULAN DUA
Buletin Statistik Perdagangan Luar Negeri Impor Februari
0.15
ANALISIS MOBILITAS TENAGA KERJA
Statistik Upah
0.1
Statistik perdagangan luar negeri ekspor Desember kde HS
Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut HS, Desember
0.88
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
bps-query-publication-similarity-pairs
- Dataset: bps-query-publication-similarity-pairs at dc8407f
- Size: 19,264 evaluation samples
- Columns:
query
,doc_title
, andscore
- Approximate statistics based on the first 1000 samples:
query doc_title score type string string float details - min: 4 tokens
- mean: 11.21 tokens
- max: 32 tokens
- min: 4 tokens
- mean: 11.42 tokens
- max: 38 tokens
- min: 0.0
- mean: 0.52
- max: 1.0
- Samples:
query doc_title score Laporan statistik perkebunan teh Indonesia
Perkembangan Beberapa Indikator Utama Sosial-Ekonomi Indonesia Agustus
0.02
Sensus ekonomi : data bisnis Jawa Tengah
Benchmark Indeks Konstruksi (=100),
0.07
data harga produsen pertanian, tanaman pangan, hortikultura & perkebunan rakyat
Statistik Harga Produsen Pertanian Subsektor Tanaman Pangan, Hortikultura dan Tanaman Perkebunan Rakyat
0.9
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | allstat-semantic-dev_spearman_cosine | allstat-semantic-test_spearman_cosine |
---|---|---|---|---|---|
0.0208 | 200 | 0.0615 | 0.0418 | 0.7425 | - |
0.0415 | 400 | 0.0403 | 0.0317 | 0.7678 | - |
0.0623 | 600 | 0.0306 | 0.0262 | 0.7783 | - |
0.0831 | 800 | 0.0262 | 0.0241 | 0.7821 | - |
0.1038 | 1000 | 0.0249 | 0.0215 | 0.7865 | - |
0.1246 | 1200 | 0.0216 | 0.0209 | 0.7902 | - |
0.1453 | 1400 | 0.0207 | 0.0196 | 0.7928 | - |
0.1661 | 1600 | 0.0199 | 0.0192 | 0.7950 | - |
0.1869 | 1800 | 0.019 | 0.0182 | 0.7963 | - |
0.2076 | 2000 | 0.0188 | 0.0189 | 0.8015 | - |
0.2284 | 2200 | 0.0182 | 0.0177 | 0.8021 | - |
0.2492 | 2400 | 0.0177 | 0.0183 | 0.7980 | - |
0.2699 | 2600 | 0.0185 | 0.0170 | 0.8044 | - |
0.2907 | 2800 | 0.0182 | 0.0173 | 0.8077 | - |
0.3115 | 3000 | 0.0174 | 0.0162 | 0.8089 | - |
0.3322 | 3200 | 0.0174 | 0.0173 | 0.8075 | - |
0.3530 | 3400 | 0.0179 | 0.0173 | 0.8097 | - |
0.3738 | 3600 | 0.0173 | 0.0165 | 0.8082 | - |
0.3945 | 3800 | 0.0163 | 0.0166 | 0.8133 | - |
0.4153 | 4000 | 0.0182 | 0.0169 | 0.8082 | - |
0.4360 | 4200 | 0.0166 | 0.0168 | 0.8061 | - |
0.4568 | 4400 | 0.016 | 0.0159 | 0.8169 | - |
0.4776 | 4600 | 0.0161 | 0.0151 | 0.8179 | - |
0.4983 | 4800 | 0.0158 | 0.0169 | 0.8160 | - |
0.5191 | 5000 | 0.0158 | 0.0156 | 0.8175 | - |
0.5399 | 5200 | 0.015 | 0.0146 | 0.8232 | - |
0.5606 | 5400 | 0.0152 | 0.0151 | 0.8222 | - |
0.5814 | 5600 | 0.0153 | 0.0151 | 0.8214 | - |
0.6022 | 5800 | 0.0151 | 0.0143 | 0.8269 | - |
0.6229 | 6000 | 0.014 | 0.0132 | 0.8293 | - |
0.6437 | 6200 | 0.0133 | 0.0129 | 0.8307 | - |
0.6645 | 6400 | 0.0126 | 0.0132 | 0.8286 | - |
0.6852 | 6600 | 0.0132 | 0.0127 | 0.8335 | - |
0.7060 | 6800 | 0.014 | 0.0129 | 0.8326 | - |
0.7267 | 7000 | 0.0137 | 0.0131 | 0.8342 | - |
0.7475 | 7200 | 0.0124 | 0.0120 | 0.8391 | - |
0.7683 | 7400 | 0.0125 | 0.0124 | 0.8360 | - |
0.7890 | 7600 | 0.0132 | 0.0126 | 0.8368 | - |
0.8098 | 7800 | 0.0129 | 0.0130 | 0.8346 | - |
0.8306 | 8000 | 0.0132 | 0.0119 | 0.8427 | - |
0.8513 | 8200 | 0.0115 | 0.0113 | 0.8442 | - |
0.8721 | 8400 | 0.0113 | 0.0114 | 0.8468 | - |
0.8929 | 8600 | 0.0111 | 0.0111 | 0.8490 | - |
0.9136 | 8800 | 0.0115 | 0.0111 | 0.8452 | - |
0.9344 | 9000 | 0.011 | 0.0109 | 0.8499 | - |
0.9551 | 9200 | 0.0105 | 0.0103 | 0.8538 | - |
0.9759 | 9400 | 0.0106 | 0.0102 | 0.8549 | - |
0.9967 | 9600 | 0.0108 | 0.0111 | 0.8510 | - |
1.0174 | 9800 | 0.0097 | 0.0103 | 0.8561 | - |
1.0382 | 10000 | 0.0091 | 0.0099 | 0.8575 | - |
1.0590 | 10200 | 0.0087 | 0.0093 | 0.8610 | - |
1.0797 | 10400 | 0.0088 | 0.0097 | 0.8580 | - |
1.1005 | 10600 | 0.0083 | 0.0090 | 0.8644 | - |
1.1213 | 10800 | 0.0088 | 0.0092 | 0.8627 | - |
1.1420 | 11000 | 0.0081 | 0.0089 | 0.8648 | - |
1.1628 | 11200 | 0.0083 | 0.0091 | 0.8619 | - |
1.1836 | 11400 | 0.0084 | 0.0096 | 0.8632 | - |
1.2043 | 11600 | 0.008 | 0.0095 | 0.8612 | - |
1.2251 | 11800 | 0.008 | 0.0094 | 0.8649 | - |
1.2458 | 12000 | 0.0081 | 0.0092 | 0.8661 | - |
1.2666 | 12200 | 0.0083 | 0.0087 | 0.8705 | - |
1.2874 | 12400 | 0.0077 | 0.0087 | 0.8705 | - |
1.3081 | 12600 | 0.0079 | 0.0085 | 0.8722 | - |
1.3289 | 12800 | 0.0075 | 0.0090 | 0.8698 | - |
1.3497 | 13000 | 0.0086 | 0.0085 | 0.8717 | - |
1.3704 | 13200 | 0.0077 | 0.0083 | 0.8741 | - |
1.3912 | 13400 | 0.0075 | 0.0083 | 0.8751 | - |
1.4120 | 13600 | 0.0071 | 0.0078 | 0.8775 | - |
1.4327 | 13800 | 0.008 | 0.0082 | 0.8734 | - |
1.4535 | 14000 | 0.0069 | 0.0084 | 0.8774 | - |
1.4743 | 14200 | 0.0075 | 0.0081 | 0.8764 | - |
1.4950 | 14400 | 0.0074 | 0.0078 | 0.8794 | - |
1.5158 | 14600 | 0.0073 | 0.0087 | 0.8741 | - |
1.5365 | 14800 | 0.0078 | 0.0080 | 0.8810 | - |
1.5573 | 15000 | 0.0067 | 0.0082 | 0.8792 | - |
1.5781 | 15200 | 0.0072 | 0.0080 | 0.8796 | - |
1.5988 | 15400 | 0.0075 | 0.0077 | 0.8832 | - |
1.6196 | 15600 | 0.007 | 0.0076 | 0.8840 | - |
1.6404 | 15800 | 0.0073 | 0.0075 | 0.8864 | - |
1.6611 | 16000 | 0.0066 | 0.0072 | 0.8877 | - |
1.6819 | 16200 | 0.0068 | 0.0074 | 0.8873 | - |
1.7027 | 16400 | 0.0067 | 0.0072 | 0.8886 | - |
1.7234 | 16600 | 0.0065 | 0.0074 | 0.8871 | - |
1.7442 | 16800 | 0.0065 | 0.0071 | 0.8915 | - |
1.7650 | 17000 | 0.0072 | 0.0071 | 0.8905 | - |
1.7857 | 17200 | 0.0063 | 0.0068 | 0.8942 | - |
1.8065 | 17400 | 0.0061 | 0.0067 | 0.8961 | - |
1.8272 | 17600 | 0.0059 | 0.0064 | 0.8991 | - |
1.8480 | 17800 | 0.0062 | 0.0065 | 0.8999 | - |
1.8688 | 18000 | 0.0066 | 0.0068 | 0.8968 | - |
1.8895 | 18200 | 0.0059 | 0.0065 | 0.8984 | - |
1.9103 | 18400 | 0.0056 | 0.0063 | 0.8993 | - |
1.9311 | 18600 | 0.006 | 0.0061 | 0.9008 | - |
1.9518 | 18800 | 0.0057 | 0.0062 | 0.9006 | - |
1.9726 | 19000 | 0.006 | 0.0060 | 0.9011 | - |
1.9934 | 19200 | 0.0062 | 0.0061 | 0.9011 | - |
2.0141 | 19400 | 0.0052 | 0.0060 | 0.9036 | - |
2.0349 | 19600 | 0.0046 | 0.0058 | 0.9057 | - |
2.0556 | 19800 | 0.0046 | 0.0056 | 0.9064 | - |
2.0764 | 20000 | 0.0042 | 0.0057 | 0.9082 | - |
2.0972 | 20200 | 0.0043 | 0.0057 | 0.9075 | - |
2.1179 | 20400 | 0.0043 | 0.0055 | 0.9089 | - |
2.1387 | 20600 | 0.0044 | 0.0060 | 0.9089 | - |
2.1595 | 20800 | 0.0047 | 0.0055 | 0.9079 | - |
2.1802 | 21000 | 0.0047 | 0.0055 | 0.9089 | - |
2.2010 | 21200 | 0.0043 | 0.0053 | 0.9121 | - |
2.2218 | 21400 | 0.004 | 0.0053 | 0.9120 | - |
2.2425 | 21600 | 0.0041 | 0.0054 | 0.9108 | - |
2.2633 | 21800 | 0.0041 | 0.0054 | 0.9111 | - |
2.2841 | 22000 | 0.0039 | 0.0053 | 0.9134 | - |
2.3048 | 22200 | 0.0045 | 0.0053 | 0.9118 | - |
2.3256 | 22400 | 0.0044 | 0.0055 | 0.9116 | - |
2.3463 | 22600 | 0.0043 | 0.0053 | 0.9140 | - |
2.3671 | 22800 | 0.004 | 0.0052 | 0.9147 | - |
2.3879 | 23000 | 0.0042 | 0.0050 | 0.9149 | - |
2.4086 | 23200 | 0.0041 | 0.0050 | 0.9175 | - |
2.4294 | 23400 | 0.004 | 0.0051 | 0.9161 | - |
2.4502 | 23600 | 0.0039 | 0.0050 | 0.9182 | - |
2.4709 | 23800 | 0.0039 | 0.0048 | 0.9204 | - |
2.4917 | 24000 | 0.0037 | 0.0047 | 0.9205 | - |
2.5125 | 24200 | 0.0035 | 0.0048 | 0.9212 | - |
2.5332 | 24400 | 0.0039 | 0.0048 | 0.9218 | - |
2.5540 | 24600 | 0.0038 | 0.0045 | 0.9229 | - |
2.5748 | 24800 | 0.0038 | 0.0047 | 0.9229 | - |
2.5955 | 25000 | 0.004 | 0.0046 | 0.9230 | - |
2.6163 | 25200 | 0.004 | 0.0045 | 0.9255 | - |
2.6370 | 25400 | 0.0036 | 0.0044 | 0.9251 | - |
2.6578 | 25600 | 0.0036 | 0.0045 | 0.9256 | - |
2.6786 | 25800 | 0.0037 | 0.0044 | 0.9263 | - |
2.6993 | 26000 | 0.0036 | 0.0044 | 0.9273 | - |
2.7201 | 26200 | 0.0037 | 0.0045 | 0.9256 | - |
2.7409 | 26400 | 0.0034 | 0.0044 | 0.9281 | - |
2.7616 | 26600 | 0.0035 | 0.0043 | 0.9285 | - |
2.7824 | 26800 | 0.0034 | 0.0042 | 0.9291 | - |
2.8032 | 27000 | 0.0032 | 0.0041 | 0.9307 | - |
2.8239 | 27200 | 0.0033 | 0.0042 | 0.9304 | - |
2.8447 | 27400 | 0.0032 | 0.0040 | 0.9311 | - |
2.8654 | 27600 | 0.0035 | 0.0042 | 0.9312 | - |
2.8862 | 27800 | 0.0034 | 0.0041 | 0.9327 | - |
2.9070 | 28000 | 0.0035 | 0.0039 | 0.9327 | - |
2.9277 | 28200 | 0.0034 | 0.0039 | 0.9337 | - |
2.9485 | 28400 | 0.003 | 0.0039 | 0.9342 | - |
2.9693 | 28600 | 0.0031 | 0.0039 | 0.9341 | - |
2.9900 | 28800 | 0.003 | 0.0038 | 0.9362 | - |
3.0108 | 29000 | 0.0026 | 0.0037 | 0.9378 | - |
3.0316 | 29200 | 0.0025 | 0.0038 | 0.9376 | - |
3.0523 | 29400 | 0.0023 | 0.0036 | 0.9378 | - |
3.0731 | 29600 | 0.0024 | 0.0037 | 0.9382 | - |
3.0939 | 29800 | 0.0024 | 0.0037 | 0.9385 | - |
3.1146 | 30000 | 0.0024 | 0.0035 | 0.9381 | - |
3.1354 | 30200 | 0.0023 | 0.0036 | 0.9385 | - |
3.1561 | 30400 | 0.0023 | 0.0035 | 0.9399 | - |
3.1769 | 30600 | 0.0022 | 0.0034 | 0.9407 | - |
3.1977 | 30800 | 0.0023 | 0.0034 | 0.9408 | - |
3.2184 | 31000 | 0.0024 | 0.0034 | 0.9406 | - |
3.2392 | 31200 | 0.0023 | 0.0033 | 0.9417 | - |
3.2600 | 31400 | 0.0022 | 0.0033 | 0.9423 | - |
3.2807 | 31600 | 0.0023 | 0.0034 | 0.9419 | - |
3.3015 | 31800 | 0.0023 | 0.0033 | 0.9428 | - |
3.3223 | 32000 | 0.0021 | 0.0032 | 0.9439 | - |
3.3430 | 32200 | 0.0021 | 0.0032 | 0.9438 | - |
3.3638 | 32400 | 0.0022 | 0.0032 | 0.9442 | - |
3.3846 | 32600 | 0.0023 | 0.0032 | 0.9445 | - |
3.4053 | 32800 | 0.0023 | 0.0031 | 0.9451 | - |
3.4261 | 33000 | 0.0022 | 0.0031 | 0.9453 | - |
3.4468 | 33200 | 0.0021 | 0.0032 | 0.9455 | - |
3.4676 | 33400 | 0.002 | 0.0031 | 0.9459 | - |
3.4884 | 33600 | 0.0024 | 0.0030 | 0.9466 | - |
3.5091 | 33800 | 0.0022 | 0.0030 | 0.9468 | - |
3.5299 | 34000 | 0.0022 | 0.0031 | 0.9472 | - |
3.5507 | 34200 | 0.0022 | 0.0030 | 0.9474 | - |
3.5714 | 34400 | 0.002 | 0.0030 | 0.9477 | - |
3.5922 | 34600 | 0.0021 | 0.0030 | 0.9480 | - |
3.6130 | 34800 | 0.002 | 0.0029 | 0.9485 | - |
3.6337 | 35000 | 0.002 | 0.0029 | 0.9489 | - |
3.6545 | 35200 | 0.0019 | 0.0029 | 0.9492 | - |
3.6752 | 35400 | 0.002 | 0.0029 | 0.9493 | - |
3.6960 | 35600 | 0.002 | 0.0029 | 0.9497 | - |
3.7168 | 35800 | 0.0021 | 0.0028 | 0.9499 | - |
3.7375 | 36000 | 0.0019 | 0.0028 | 0.9501 | - |
3.7583 | 36200 | 0.0019 | 0.0028 | 0.9507 | - |
3.7791 | 36400 | 0.0019 | 0.0028 | 0.9510 | - |
3.7998 | 36600 | 0.0019 | 0.0028 | 0.9514 | - |
3.8206 | 36800 | 0.0019 | 0.0027 | 0.9517 | - |
3.8414 | 37000 | 0.0018 | 0.0028 | 0.9517 | - |
3.8621 | 37200 | 0.0019 | 0.0027 | 0.9519 | - |
3.8829 | 37400 | 0.0017 | 0.0027 | 0.9521 | - |
3.9037 | 37600 | 0.0019 | 0.0027 | 0.9522 | - |
3.9244 | 37800 | 0.0019 | 0.0027 | 0.9522 | - |
3.9452 | 38000 | 0.0019 | 0.0027 | 0.9523 | - |
3.9659 | 38200 | 0.0018 | 0.0027 | 0.9525 | - |
3.9867 | 38400 | 0.0018 | 0.0027 | 0.9525 | - |
4.0 | 38528 | - | - | - | 0.9518 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.2.2+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 25
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for yahyaabd/allstat-semantic-search-paraphrase-mpnet-base-v2-2-sts
Dataset used to train yahyaabd/allstat-semantic-search-paraphrase-mpnet-base-v2-2-sts
Evaluation results
- Pearson Cosine on allstat semantic devself-reported0.990
- Spearman Cosine on allstat semantic devself-reported0.952
- Pearson Cosine on allstat semantic testself-reported0.989
- Spearman Cosine on allstat semantic testself-reported0.952