File size: 32,053 Bytes
97d64a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1432
- loss:MultipleNegativesRankingLoss
base_model: denaya/indoSBERT-large
widget:
- source_sentence: 'Input-output domestik Indonesia: 17 sektor usaha, harga produsen,
    data tahun 2016 (juta Rp)'
  sentences:
  - 'Impor Besi dan Baja Menurut Negara Asal Utama, 2017-2023 '
  - 'IHK dan Rata-rata Upah per Bulan Buruh Hotel di Bawah Mandor (Supervisor), 1996-2014
    (1996=100) '
  - 'Tabel Input-Output Indonesia Transaksi Domestik Atas Dasar Harga Produsen (17
    Lapangan Usaha), 2016 (Juta Rupiah) '
- source_sentence: 'Gaji bulanan: beda umur, beda jenis pekerjaan (9 sektor), 2017'
  sentences:
  - 'Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Kelompok Umur
    dan Lapangan Pekerjaan Utama di 9 Sektor (Rupiah), 2017 '
  - 'Ekspor Rumput Laut dan Ganggang Lainnya menurut Negara Tujuan Utama, 2012-2023 '
  - 'Rata-Rata Harga Valuta Asing Terpilih menurut Provinsi 2017 '
- source_sentence: Ringkasan aliran dana kuartal terakhir 2009 dalam Rupiah
  sentences:
  - 'Jumlah Perahu/Kapal, Luas Usaha Budidaya dan Produksi menurut Sub Sektor Perikanan,
    2002-2016 '
  - 'Jumlah Pendapatan Menurut Golongan Rumah Tangga (miliar rupiah) 2000, 2005, dan
    2008 '
  - 'Ringkasan Neraca Arus Dana, Triwulan IV, 2009, (Miliar Rupiah) '
- source_sentence: Berapa total transaksi (harga pembeli) untuk 9 sektor ekonomi di
    Indonesia tahun 2005? (miliar rupiah)
  sentences:
  - 'Jumlah Rumah Tangga Perikanan Budidaya Menurut Provinsi dan Jenis Budidaya, 2000-2016 '
  - 'Transaksi Total Atas Dasar Harga Pembeli 9 Sektor Ekonomi (miliar rupiah), 2005 '
  - 'Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Luar Pulau
    Jawa dan Sumatera dengan Nasional (2018=100) '
- source_sentence: Bagaimana kaitan antara pendidikan dan kegiatan mingguan penduduk
    usia 15+ pada tahun 2022?
  sentences:
  - 'Persentase Perkembangan Distribusi Pengeluaran '
  - 'Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan Lapangan Pekerjaan
    Utama (ribu rupiah), 2018 '
  - 'Penduduk Berumur 15 Tahun Ke Atas Menurut Pendidikan Tertinggi yang Ditamatkan
    dan Jenis Kegiatan Selama Seminggu yang Lalu, 2008-2024 '
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on denaya/indoSBERT-large
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: eval
      type: eval
    metrics:
    - type: cosine_accuracy@1
      value: 0.9120521172638436
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.990228013029316
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.993485342019544
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.996742671009772
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.9120521172638436
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3572204125950054
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.23778501628664495
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.13745928338762217
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7097252402956855
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7867346590488319
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8052359035035943
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8221312325947948
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8348212945928647
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9497052892818366
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7729410950742827
      name: Cosine Map@100
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: quora duplicates dev
      type: quora_duplicates_dev
    metrics:
    - type: cosine_accuracy
      value: 0.9914529914529915
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.31953397393226624
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.9850953206239168
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.30364981293678284
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.988865692414753
      name: Cosine Precision
    - type: cosine_recall
      value: 0.981353591160221
      name: Cosine Recall
    - type: cosine_ap
      value: 0.9956970583311449
      name: Cosine Ap
    - type: cosine_mcc
      value: 0.9791180702139771
      name: Cosine Mcc
---

# SentenceTransformer based on denaya/indoSBERT-large

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [denaya/indoSBERT-large](https://huggingface.co/denaya/indoSBERT-large). It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [denaya/indoSBERT-large](https://huggingface.co/denaya/indoSBERT-large) <!-- at revision 5c64d43f07f7054dfbf33d226b3066414b6ebc4a -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 256 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 1024, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-large-bpstable-v1")
# Run inference
sentences = [
    'Bagaimana kaitan antara pendidikan dan kegiatan mingguan penduduk usia 15+ pada tahun 2022?',
    'Penduduk Berumur 15 Tahun Ke Atas Menurut Pendidikan Tertinggi yang Ditamatkan dan Jenis Kegiatan Selama Seminggu yang Lalu, 2008-2024 ',
    'Persentase Perkembangan Distribusi Pengeluaran ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 256]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `eval`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.9121     |
| cosine_accuracy@3   | 0.9902     |
| cosine_accuracy@5   | 0.9935     |
| cosine_accuracy@10  | 0.9967     |
| cosine_precision@1  | 0.9121     |
| cosine_precision@3  | 0.3572     |
| cosine_precision@5  | 0.2378     |
| cosine_precision@10 | 0.1375     |
| cosine_recall@1     | 0.7097     |
| cosine_recall@3     | 0.7867     |
| cosine_recall@5     | 0.8052     |
| cosine_recall@10    | 0.8221     |
| **cosine_ndcg@10**  | **0.8348** |
| cosine_mrr@10       | 0.9497     |
| cosine_map@100      | 0.7729     |

#### Binary Classification

* Dataset: `quora_duplicates_dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                    | Value      |
|:--------------------------|:-----------|
| cosine_accuracy           | 0.9915     |
| cosine_accuracy_threshold | 0.3195     |
| cosine_f1                 | 0.9851     |
| cosine_f1_threshold       | 0.3036     |
| cosine_precision          | 0.9889     |
| cosine_recall             | 0.9814     |
| **cosine_ap**             | **0.9957** |
| cosine_mcc                | 0.9791     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 1,432 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                        | sentence_1                                                                        | label                        |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------|
  | type    | string                                                                            | string                                                                            | int                          |
  | details | <ul><li>min: 4 tokens</li><li>mean: 16.84 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 20.88 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
* Samples:
  | sentence_0                                                                                             | sentence_1                                                                                                                       | label          |
  |:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>Average monthly net wage/salary of employees by age group and type of work (Rupiah), 2018</code> | <code>Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Kelompok Umur dan Jenis Pekerjaan (Rupiah), 2018 </code> | <code>1</code> |
  | <code>Cek average real wage buruh industri pengolahan (level bawah) sekitar tahun 2009</code>          | <code>Rata-rata Upah Riil Per Bulan Buruh Industri Pengolahan di Bawah Mandor, 2005-2014 (1996=100) </code>                      | <code>1</code> |
  | <code>Dimana saya bisa lihat rekapitulasi dokumen RPB kabupaten/kota?</code>                           | <code>Rekap Dokumen RPB Kabupaten/Kota </code>                                                                                   | <code>1</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 30
- `fp16`: True
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 30
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch   | Step | Training Loss | eval_cosine_ndcg@10 | quora_duplicates_dev_cosine_ap |
|:-------:|:----:|:-------------:|:-------------------:|:------------------------------:|
| 0.2222  | 20   | -             | 0.7769              | -                              |
| 0.4444  | 40   | -             | 0.8167              | -                              |
| 0.6667  | 60   | -             | 0.8221              | -                              |
| 0.8889  | 80   | -             | 0.8282              | -                              |
| 1.0     | 90   | -             | 0.8256              | -                              |
| 1.1111  | 100  | -             | 0.8278              | -                              |
| 1.3333  | 120  | -             | 0.8388              | -                              |
| 1.5556  | 140  | -             | 0.8347              | -                              |
| 1.7778  | 160  | -             | 0.8351              | -                              |
| 2.0     | 180  | -             | 0.8407              | -                              |
| 2.2222  | 200  | -             | 0.8302              | -                              |
| 2.4444  | 220  | -             | 0.8261              | -                              |
| 2.6667  | 240  | -             | 0.8217              | -                              |
| 2.8889  | 260  | -             | 0.8161              | -                              |
| 3.0     | 270  | -             | 0.8143              | -                              |
| 3.1111  | 280  | -             | 0.8133              | -                              |
| 3.3333  | 300  | -             | 0.8259              | -                              |
| 3.5556  | 320  | -             | 0.8342              | -                              |
| 3.7778  | 340  | -             | 0.8267              | -                              |
| 4.0     | 360  | -             | 0.8190              | -                              |
| 4.2222  | 380  | -             | 0.8193              | -                              |
| 4.4444  | 400  | -             | 0.8281              | -                              |
| 4.6667  | 420  | -             | 0.8283              | -                              |
| 4.8889  | 440  | -             | 0.8197              | -                              |
| 5.0     | 450  | -             | 0.8211              | -                              |
| 5.1111  | 460  | -             | 0.8118              | -                              |
| 5.3333  | 480  | -             | 0.8298              | -                              |
| 5.5556  | 500  | 0.0412        | 0.8283              | -                              |
| 5.7778  | 520  | -             | 0.8264              | -                              |
| 6.0     | 540  | -             | 0.8271              | -                              |
| 6.2222  | 560  | -             | 0.8243              | -                              |
| 6.4444  | 580  | -             | 0.8256              | -                              |
| 6.6667  | 600  | -             | 0.8356              | -                              |
| 6.8889  | 620  | -             | 0.8332              | -                              |
| 7.0     | 630  | -             | 0.8250              | -                              |
| 7.1111  | 640  | -             | 0.8179              | -                              |
| 7.3333  | 660  | -             | 0.8356              | -                              |
| 7.5556  | 680  | -             | 0.8400              | -                              |
| 7.7778  | 700  | -             | 0.8349              | -                              |
| 8.0     | 720  | -             | 0.8281              | -                              |
| 8.2222  | 740  | -             | 0.8330              | -                              |
| 8.4444  | 760  | -             | 0.8338              | -                              |
| 8.6667  | 780  | -             | 0.8338              | -                              |
| 8.8889  | 800  | -             | 0.8344              | -                              |
| 9.0     | 810  | -             | 0.8319              | -                              |
| 9.1111  | 820  | -             | 0.8328              | -                              |
| 9.3333  | 840  | -             | 0.8325              | -                              |
| 9.5556  | 860  | -             | 0.8375              | -                              |
| 9.7778  | 880  | -             | 0.8306              | -                              |
| 10.0    | 900  | -             | 0.8263              | -                              |
| 10.2222 | 920  | -             | 0.8280              | -                              |
| 10.4444 | 940  | -             | 0.8272              | -                              |
| 10.6667 | 960  | -             | 0.8280              | -                              |
| 10.8889 | 980  | -             | 0.8313              | -                              |
| 11.0    | 990  | -             | 0.8307              | -                              |
| 11.1111 | 1000 | 0.0198        | 0.8324              | -                              |
| 11.3333 | 1020 | -             | 0.8303              | -                              |
| 11.5556 | 1040 | -             | 0.8262              | -                              |
| 11.7778 | 1060 | -             | 0.8294              | -                              |
| 12.0    | 1080 | -             | 0.8309              | -                              |
| 12.2222 | 1100 | -             | 0.8274              | -                              |
| 12.4444 | 1120 | -             | 0.8312              | -                              |
| 12.6667 | 1140 | -             | 0.8371              | -                              |
| 12.8889 | 1160 | -             | 0.8408              | -                              |
| 13.0    | 1170 | -             | 0.8374              | -                              |
| 13.1111 | 1180 | -             | 0.8344              | -                              |
| 13.3333 | 1200 | -             | 0.8341              | -                              |
| 13.5556 | 1220 | -             | 0.8333              | -                              |
| 13.7778 | 1240 | -             | 0.8388              | -                              |
| 14.0    | 1260 | -             | 0.8414              | -                              |
| 14.2222 | 1280 | -             | 0.8344              | -                              |
| 14.4444 | 1300 | -             | 0.8328              | -                              |
| 14.6667 | 1320 | -             | 0.8340              | -                              |
| 14.8889 | 1340 | -             | 0.8317              | -                              |
| 15.0    | 1350 | -             | 0.8260              | -                              |
| 15.1111 | 1360 | -             | 0.8252              | -                              |
| 15.3333 | 1380 | -             | 0.8244              | -                              |
| 15.5556 | 1400 | -             | 0.8269              | -                              |
| 15.7778 | 1420 | -             | 0.8275              | -                              |
| 16.0    | 1440 | -             | 0.8281              | -                              |
| 16.2222 | 1460 | -             | 0.8294              | -                              |
| 16.4444 | 1480 | -             | 0.8299              | -                              |
| 16.6667 | 1500 | 0.0136        | 0.8318              | -                              |
| 16.8889 | 1520 | -             | 0.8320              | -                              |
| 17.0    | 1530 | -             | 0.8332              | -                              |
| 17.1111 | 1540 | -             | 0.8337              | -                              |
| 17.3333 | 1560 | -             | 0.8299              | -                              |
| 17.5556 | 1580 | -             | 0.8283              | -                              |
| 17.7778 | 1600 | -             | 0.8309              | -                              |
| 18.0    | 1620 | -             | 0.8329              | -                              |
| 18.2222 | 1640 | -             | 0.8317              | -                              |
| 18.4444 | 1660 | -             | 0.8313              | -                              |
| 18.6667 | 1680 | -             | 0.8317              | -                              |
| 18.8889 | 1700 | -             | 0.8356              | -                              |
| 19.0    | 1710 | -             | 0.8345              | -                              |
| 19.1111 | 1720 | -             | 0.8358              | -                              |
| 19.3333 | 1740 | -             | 0.8334              | -                              |
| 19.5556 | 1760 | -             | 0.8335              | -                              |
| 19.7778 | 1780 | -             | 0.8318              | -                              |
| 20.0    | 1800 | -             | 0.8326              | -                              |
| 20.2222 | 1820 | -             | 0.8318              | -                              |
| 20.4444 | 1840 | -             | 0.8335              | -                              |
| 20.6667 | 1860 | -             | 0.8333              | -                              |
| 20.8889 | 1880 | -             | 0.8335              | -                              |
| 21.0    | 1890 | -             | 0.8341              | -                              |
| 21.1111 | 1900 | -             | 0.8341              | -                              |
| 21.3333 | 1920 | -             | 0.8355              | -                              |
| 21.5556 | 1940 | -             | 0.8360              | -                              |
| 21.7778 | 1960 | -             | 0.8343              | -                              |
| 22.0    | 1980 | -             | 0.8351              | -                              |
| 22.2222 | 2000 | 0.015         | 0.8342              | -                              |
| 22.4444 | 2020 | -             | 0.8342              | -                              |
| 22.6667 | 2040 | -             | 0.8339              | -                              |
| 22.8889 | 2060 | -             | 0.8342              | -                              |
| 23.0    | 2070 | -             | 0.8345              | -                              |
| 23.1111 | 2080 | -             | 0.8354              | -                              |
| 23.3333 | 2100 | -             | 0.8366              | -                              |
| 23.5556 | 2120 | -             | 0.8379              | -                              |
| 23.7778 | 2140 | -             | 0.8386              | -                              |
| 24.0    | 2160 | -             | 0.8367              | -                              |
| 24.2222 | 2180 | -             | 0.8357              | -                              |
| 24.4444 | 2200 | -             | 0.8372              | -                              |
| 24.6667 | 2220 | -             | 0.8377              | -                              |
| 24.8889 | 2240 | -             | 0.8373              | -                              |
| 25.0    | 2250 | -             | 0.8367              | -                              |
| 25.1111 | 2260 | -             | 0.8366              | -                              |
| 25.3333 | 2280 | -             | 0.8369              | -                              |
| 25.5556 | 2300 | -             | 0.8373              | -                              |
| 25.7778 | 2320 | -             | 0.8366              | -                              |
| 26.0    | 2340 | -             | 0.8354              | -                              |
| 26.2222 | 2360 | -             | 0.8347              | -                              |
| 26.4444 | 2380 | -             | 0.8344              | -                              |
| 26.6667 | 2400 | -             | 0.8341              | -                              |
| 26.8889 | 2420 | -             | 0.8343              | -                              |
| 27.0    | 2430 | -             | 0.8344              | -                              |
| 27.1111 | 2440 | -             | 0.8345              | -                              |
| 27.3333 | 2460 | -             | 0.8344              | -                              |
| 27.5556 | 2480 | -             | 0.8347              | -                              |
| 27.7778 | 2500 | 0.0136        | 0.8342              | -                              |
| 28.0    | 2520 | -             | 0.8347              | -                              |
| 28.2222 | 2540 | -             | 0.8346              | -                              |
| 28.4444 | 2560 | -             | 0.8346              | -                              |
| 28.6667 | 2580 | -             | 0.8347              | -                              |
| 28.8889 | 2600 | -             | 0.8348              | -                              |
| 29.0    | 2610 | -             | 0.8348              | -                              |
| 29.1111 | 2620 | -             | 0.8348              | -                              |
| 29.3333 | 2640 | -             | 0.8348              | -                              |
| 29.5556 | 2660 | -             | 0.8348              | -                              |
| 29.7778 | 2680 | -             | 0.8348              | -                              |
| 30.0    | 2700 | -             | 0.8348              | -                              |
| -1      | -1   | -             | -                   | 0.9957                         |

</details>

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->