SentenceTransformer based on denaya/indoSBERT-large
This is a sentence-transformers model finetuned from denaya/indoSBERT-large on the query-hard-pos-neg-doc-pairs-statictable dataset. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: denaya/indoSBERT-large
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 256 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1024, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-large-v1-32-2")
# Run inference
sentences = [
'Arus dana Q3 2006',
'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)',
'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 256]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Datasets:
allstats-semantic-large-v1_test
andallstats-semantic-large-v1_dev
- Evaluated with
BinaryClassificationEvaluator
Metric | allstats-semantic-large-v1_test | allstats-semantic-large-v1_dev |
---|---|---|
cosine_accuracy | 0.9834 | 0.9761 |
cosine_accuracy_threshold | 0.7773 | 0.7573 |
cosine_f1 | 0.9746 | 0.9641 |
cosine_f1_threshold | 0.7773 | 0.7573 |
cosine_precision | 0.9748 | 0.9386 |
cosine_recall | 0.9743 | 0.991 |
cosine_ap | 0.996 | 0.9953 |
cosine_mcc | 0.9623 | 0.947 |
Training Details
Training Dataset
query-hard-pos-neg-doc-pairs-statictable
- Dataset: query-hard-pos-neg-doc-pairs-statictable at 7b28b96
- Size: 25,580 training samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string int details - min: 6 tokens
- mean: 17.12 tokens
- max: 31 tokens
- min: 5 tokens
- mean: 20.47 tokens
- max: 42 tokens
- 0: ~70.80%
- 1: ~29.20%
- Samples:
query doc label Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020
Jumlah Penghuni Lapas per Kanwil
0
status pekerjaan utama penduduk usia 15+ yang bekerja, 2020
Jumlah Penghuni Lapas per Kanwil
0
STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020
Jumlah Penghuni Lapas per Kanwil
0
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
query-hard-pos-neg-doc-pairs-statictable
- Dataset: query-hard-pos-neg-doc-pairs-statictable at 7b28b96
- Size: 5,479 evaluation samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string int details - min: 7 tokens
- mean: 17.85 tokens
- max: 35 tokens
- min: 3 tokens
- mean: 21.2 tokens
- max: 31 tokens
- 0: ~71.50%
- 1: ~28.50%
- Samples:
query doc label Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?
Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017
0
bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014?
Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017
0
BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014?
Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017
0
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 2warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Trueeval_on_start
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | allstats-semantic-large-v1_test_cosine_ap | allstats-semantic-large-v1_dev_cosine_ap |
---|---|---|---|---|---|
-1 | -1 | - | - | 0.9750 | - |
0 | 0 | - | 0.1850 | - | 0.9766 |
0.025 | 20 | 0.1581 | 0.1538 | - | 0.9789 |
0.05 | 40 | 0.1898 | 0.1200 | - | 0.9848 |
0.075 | 60 | 0.0647 | 0.1096 | - | 0.9855 |
0.1 | 80 | 0.118 | 0.1242 | - | 0.9831 |
0.125 | 100 | 0.0545 | 0.1301 | - | 0.9827 |
0.15 | 120 | 0.0646 | 0.1114 | - | 0.9862 |
0.175 | 140 | 0.0775 | 0.1005 | - | 0.9865 |
0.2 | 160 | 0.0664 | 0.1234 | - | 0.9840 |
0.225 | 180 | 0.067 | 0.1349 | - | 0.9850 |
0.25 | 200 | 0.0823 | 0.1032 | - | 0.9877 |
0.275 | 220 | 0.0895 | 0.1432 | - | 0.9808 |
0.3 | 240 | 0.0666 | 0.1389 | - | 0.9809 |
0.325 | 260 | 0.0872 | 0.1122 | - | 0.9844 |
0.35 | 280 | 0.0551 | 0.1435 | - | 0.9838 |
0.375 | 300 | 0.0919 | 0.1068 | - | 0.9886 |
0.4 | 320 | 0.0437 | 0.0903 | - | 0.9861 |
0.425 | 340 | 0.0619 | 0.1065 | - | 0.9850 |
0.45 | 360 | 0.0469 | 0.1346 | - | 0.9844 |
0.475 | 380 | 0.029 | 0.1351 | - | 0.9828 |
0.5 | 400 | 0.0511 | 0.1123 | - | 0.9843 |
0.525 | 420 | 0.0394 | 0.1434 | - | 0.9815 |
0.55 | 440 | 0.0178 | 0.1577 | - | 0.9769 |
0.575 | 460 | 0.047 | 0.1253 | - | 0.9796 |
0.6 | 480 | 0.0066 | 0.1262 | - | 0.9791 |
0.625 | 500 | 0.0383 | 0.1277 | - | 0.9814 |
0.65 | 520 | 0.0084 | 0.1361 | - | 0.9845 |
0.675 | 540 | 0.0409 | 0.1202 | - | 0.9872 |
0.7 | 560 | 0.0372 | 0.1245 | - | 0.9854 |
0.725 | 580 | 0.0353 | 0.1469 | - | 0.9817 |
0.75 | 600 | 0.0429 | 0.1225 | - | 0.9836 |
0.775 | 620 | 0.0595 | 0.1082 | - | 0.9862 |
0.8 | 640 | 0.0266 | 0.0886 | - | 0.9903 |
0.825 | 660 | 0.0178 | 0.0712 | - | 0.9918 |
0.85 | 680 | 0.0567 | 0.0511 | - | 0.9936 |
0.875 | 700 | 0.0142 | 0.0538 | - | 0.9916 |
0.9 | 720 | 0.0136 | 0.0726 | - | 0.9890 |
0.925 | 740 | 0.0192 | 0.0707 | - | 0.9884 |
0.95 | 760 | 0.0253 | 0.0937 | - | 0.9872 |
0.975 | 780 | 0.0149 | 0.0792 | - | 0.9878 |
1.0 | 800 | 0.0231 | 0.0912 | - | 0.9879 |
1.025 | 820 | 0.0 | 0.1030 | - | 0.9871 |
1.05 | 840 | 0.0096 | 0.0990 | - | 0.9876 |
1.075 | 860 | 0.0 | 0.1032 | - | 0.9868 |
1.1 | 880 | 0.0 | 0.1037 | - | 0.9866 |
1.125 | 900 | 0.0 | 0.1038 | - | 0.9866 |
1.15 | 920 | 0.0 | 0.1038 | - | 0.9866 |
1.175 | 940 | 0.0 | 0.1038 | - | 0.9866 |
1.2 | 960 | 0.0121 | 0.1030 | - | 0.9895 |
1.225 | 980 | 0.0 | 0.1035 | - | 0.9899 |
1.25 | 1000 | 0.0 | 0.1040 | - | 0.9898 |
1.275 | 1020 | 0.0 | 0.1049 | - | 0.9898 |
1.3 | 1040 | 0.0 | 0.1049 | - | 0.9898 |
1.325 | 1060 | 0.0067 | 0.1015 | - | 0.9903 |
1.35 | 1080 | 0.0 | 0.1048 | - | 0.9901 |
1.375 | 1100 | 0.0159 | 0.0956 | - | 0.9910 |
1.4 | 1120 | 0.0067 | 0.0818 | - | 0.9926 |
1.425 | 1140 | 0.0151 | 0.0838 | - | 0.9926 |
1.45 | 1160 | 0.0 | 0.0889 | - | 0.9920 |
1.475 | 1180 | 0.0 | 0.0894 | - | 0.9920 |
1.5 | 1200 | 0.023 | 0.0696 | - | 0.9935 |
1.525 | 1220 | 0.0 | 0.0693 | - | 0.9935 |
1.55 | 1240 | 0.0 | 0.0711 | - | 0.9935 |
1.575 | 1260 | 0.0 | 0.0711 | - | 0.9935 |
1.6 | 1280 | 0.0 | 0.0711 | - | 0.9935 |
1.625 | 1300 | 0.0176 | 0.0743 | - | 0.9936 |
1.65 | 1320 | 0.0 | 0.0806 | - | 0.9931 |
1.675 | 1340 | 0.0 | 0.0817 | - | 0.9931 |
1.7 | 1360 | 0.007 | 0.0809 | - | 0.9929 |
1.725 | 1380 | 0.0209 | 0.0700 | - | 0.9941 |
1.75 | 1400 | 0.0068 | 0.0605 | - | 0.9949 |
1.775 | 1420 | 0.0069 | 0.0564 | - | 0.9951 |
1.8 | 1440 | 0.0097 | 0.0559 | - | 0.9953 |
1.825 | 1460 | 0.0 | 0.0557 | - | 0.9953 |
1.85 | 1480 | 0.0 | 0.0557 | - | 0.9953 |
1.875 | 1500 | 0.0 | 0.0557 | - | 0.9953 |
1.9 | 1520 | 0.0 | 0.0557 | - | 0.9953 |
1.925 | 1540 | 0.0 | 0.0557 | - | 0.9953 |
1.95 | 1560 | 0.0089 | 0.0544 | - | 0.9953 |
1.975 | 1580 | 0.0 | 0.0544 | - | 0.9953 |
2.0 | 1600 | 0.0 | 0.0544 | - | 0.9953 |
-1 | -1 | - | - | 0.9960 | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for yahyaabd/allstats-search-large-v1-32-2
Base model
denaya/indoSBERT-largeDataset used to train yahyaabd/allstats-search-large-v1-32-2
Evaluation results
- Cosine Accuracy on allstats semantic large v1 testself-reported0.983
- Cosine Accuracy Threshold on allstats semantic large v1 testself-reported0.777
- Cosine F1 on allstats semantic large v1 testself-reported0.975
- Cosine F1 Threshold on allstats semantic large v1 testself-reported0.777
- Cosine Precision on allstats semantic large v1 testself-reported0.975
- Cosine Recall on allstats semantic large v1 testself-reported0.974
- Cosine Ap on allstats semantic large v1 testself-reported0.996
- Cosine Mcc on allstats semantic large v1 testself-reported0.962
- Cosine Accuracy on allstats semantic large v1 devself-reported0.976
- Cosine Accuracy Threshold on allstats semantic large v1 devself-reported0.757