yahyaabd commited on
Commit
01286d7
·
verified ·
1 Parent(s): 6aa67cd

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 1024, "out_features": 256, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed36d1e09f407db1ba4f46d6f529ca0154e80b690eacfbe09959e28ea5a9a7f9
3
+ size 1049760
README.md ADDED
@@ -0,0 +1,558 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:25580
8
+ - loss:OnlineContrastiveLoss
9
+ base_model: denaya/indoSBERT-large
10
+ widget:
11
+ - source_sentence: ikhtisar arus kas triwulan 1, 2004 (miliar)
12
+ sentences:
13
+ - Balita (0-59 Bulan) Menurut Status Gizi, Tahun 1998-2005
14
+ - Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Luar Pulau
15
+ Jawa dan Sumatera dengan Nasional (2018=100)
16
+ - Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
17
+ dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tengah, 2018-2023
18
+ - source_sentence: BaIgaimana gambaran neraca arus dana dUi Indonesia pada kuartal
19
+ kedua tahun 2015?
20
+ sentences:
21
+ - Jumlah Sekolah, Guru, dan Murid Sekolah Menengah Pertama (SMP) di Bawah Kementrian
22
+ Pendidikan dan Kebudayaan Menurut Provinsi 2011/2012-2015/2016
23
+ - Ringkasan Neraca Arus Dana Triwulan III Tahun 2003 (Miliar Rupiah)
24
+ - Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
25
+ dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tenggara, 2018-2023
26
+ - source_sentence: Berapa persen pengeluaran orang di kotaa untuk makanan vs non-makanan,
27
+ per provinsi, 2018?
28
+ sentences:
29
+ - Ekspor Tanaman Obat, Aromatik, dan Rempah-Rempah menurut Negara Tujuan Utama,
30
+ 2012-2023
31
+ - Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan Pendidikan Tertinggi
32
+ yang Ditamatkan (ribu rupiah), 2017
33
+ - IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor),
34
+ 1996-2014 (1996=100)
35
+ - source_sentence: Negara-negara asal impor crude oil dan produk turunannya tahun
36
+ 2002-2023
37
+ sentences:
38
+ - Persentase Pengeluaran Rata-rata per Kapita Sebulan Menurut Kelompok Barang, Indonesia,
39
+ 1999, 2002-2023
40
+ - Rata-rata Pendapatan Bersih Berusaha Sendiri menurut Provinsi dan Pendidikan yang
41
+ Ditamatkan (ribu rupiah), 2016
42
+ - Perkembangan Beberapa Agregat Pendapatan dan Pendapatan per Kapita Atas Dasar
43
+ Harga Berlaku, 2010-2016
44
+ - source_sentence: Arus dana Q3 2006
45
+ sentences:
46
+ - Posisi Simpanan Berjangka Rupiah pada Bank Umum dan BPR Menurut Golongan Pemilik
47
+ (miliar rupiah), 2005-2018
48
+ - Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)
49
+ - Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok
50
+ Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012
51
+ datasets:
52
+ - yahyaabd/query-hard-pos-neg-doc-pairs-statictable
53
+ pipeline_tag: sentence-similarity
54
+ library_name: sentence-transformers
55
+ metrics:
56
+ - cosine_accuracy
57
+ - cosine_accuracy_threshold
58
+ - cosine_f1
59
+ - cosine_f1_threshold
60
+ - cosine_precision
61
+ - cosine_recall
62
+ - cosine_ap
63
+ - cosine_mcc
64
+ model-index:
65
+ - name: SentenceTransformer based on denaya/indoSBERT-large
66
+ results:
67
+ - task:
68
+ type: binary-classification
69
+ name: Binary Classification
70
+ dataset:
71
+ name: allstats semantic large v1 test
72
+ type: allstats-semantic-large-v1_test
73
+ metrics:
74
+ - type: cosine_accuracy
75
+ value: 0.9834364761558063
76
+ name: Cosine Accuracy
77
+ - type: cosine_accuracy_threshold
78
+ value: 0.7773222327232361
79
+ name: Cosine Accuracy Threshold
80
+ - type: cosine_f1
81
+ value: 0.9745739033249511
82
+ name: Cosine F1
83
+ - type: cosine_f1_threshold
84
+ value: 0.7773222327232361
85
+ name: Cosine F1 Threshold
86
+ - type: cosine_precision
87
+ value: 0.9748462828395752
88
+ name: Cosine Precision
89
+ - type: cosine_recall
90
+ value: 0.9743016759776536
91
+ name: Cosine Recall
92
+ - type: cosine_ap
93
+ value: 0.9959810762137397
94
+ name: Cosine Ap
95
+ - type: cosine_mcc
96
+ value: 0.9622916280716365
97
+ name: Cosine Mcc
98
+ - task:
99
+ type: binary-classification
100
+ name: Binary Classification
101
+ dataset:
102
+ name: allstats semantic large v1 dev
103
+ type: allstats-semantic-large-v1_dev
104
+ metrics:
105
+ - type: cosine_accuracy
106
+ value: 0.9760905274685161
107
+ name: Cosine Accuracy
108
+ - type: cosine_accuracy_threshold
109
+ value: 0.7572722434997559
110
+ name: Cosine Accuracy Threshold
111
+ - type: cosine_f1
112
+ value: 0.9640997533570841
113
+ name: Cosine F1
114
+ - type: cosine_f1_threshold
115
+ value: 0.7572722434997559
116
+ name: Cosine F1 Threshold
117
+ - type: cosine_precision
118
+ value: 0.9386339381003201
119
+ name: Cosine Precision
120
+ - type: cosine_recall
121
+ value: 0.9909859154929578
122
+ name: Cosine Recall
123
+ - type: cosine_ap
124
+ value: 0.9953499585582108
125
+ name: Cosine Ap
126
+ - type: cosine_mcc
127
+ value: 0.9469795586519781
128
+ name: Cosine Mcc
129
+ ---
130
+
131
+ # SentenceTransformer based on denaya/indoSBERT-large
132
+
133
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [denaya/indoSBERT-large](https://huggingface.co/denaya/indoSBERT-large) on the [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) dataset. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
134
+
135
+ ## Model Details
136
+
137
+ ### Model Description
138
+ - **Model Type:** Sentence Transformer
139
+ - **Base model:** [denaya/indoSBERT-large](https://huggingface.co/denaya/indoSBERT-large) <!-- at revision 5c64d43f07f7054dfbf33d226b3066414b6ebc4a -->
140
+ - **Maximum Sequence Length:** 256 tokens
141
+ - **Output Dimensionality:** 256 dimensions
142
+ - **Similarity Function:** Cosine Similarity
143
+ - **Training Dataset:**
144
+ - [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable)
145
+ <!-- - **Language:** Unknown -->
146
+ <!-- - **License:** Unknown -->
147
+
148
+ ### Model Sources
149
+
150
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
151
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
152
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
153
+
154
+ ### Full Model Architecture
155
+
156
+ ```
157
+ SentenceTransformer(
158
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
159
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
160
+ (2): Dense({'in_features': 1024, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
161
+ )
162
+ ```
163
+
164
+ ## Usage
165
+
166
+ ### Direct Usage (Sentence Transformers)
167
+
168
+ First install the Sentence Transformers library:
169
+
170
+ ```bash
171
+ pip install -U sentence-transformers
172
+ ```
173
+
174
+ Then you can load this model and run inference.
175
+ ```python
176
+ from sentence_transformers import SentenceTransformer
177
+
178
+ # Download from the 🤗 Hub
179
+ model = SentenceTransformer("yahyaabd/allstats-search-large-v1-32-2")
180
+ # Run inference
181
+ sentences = [
182
+ 'Arus dana Q3 2006',
183
+ 'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)',
184
+ 'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012',
185
+ ]
186
+ embeddings = model.encode(sentences)
187
+ print(embeddings.shape)
188
+ # [3, 256]
189
+
190
+ # Get the similarity scores for the embeddings
191
+ similarities = model.similarity(embeddings, embeddings)
192
+ print(similarities.shape)
193
+ # [3, 3]
194
+ ```
195
+
196
+ <!--
197
+ ### Direct Usage (Transformers)
198
+
199
+ <details><summary>Click to see the direct usage in Transformers</summary>
200
+
201
+ </details>
202
+ -->
203
+
204
+ <!--
205
+ ### Downstream Usage (Sentence Transformers)
206
+
207
+ You can finetune this model on your own dataset.
208
+
209
+ <details><summary>Click to expand</summary>
210
+
211
+ </details>
212
+ -->
213
+
214
+ <!--
215
+ ### Out-of-Scope Use
216
+
217
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
218
+ -->
219
+
220
+ ## Evaluation
221
+
222
+ ### Metrics
223
+
224
+ #### Binary Classification
225
+
226
+ * Datasets: `allstats-semantic-large-v1_test` and `allstats-semantic-large-v1_dev`
227
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
228
+
229
+ | Metric | allstats-semantic-large-v1_test | allstats-semantic-large-v1_dev |
230
+ |:--------------------------|:--------------------------------|:-------------------------------|
231
+ | cosine_accuracy | 0.9834 | 0.9761 |
232
+ | cosine_accuracy_threshold | 0.7773 | 0.7573 |
233
+ | cosine_f1 | 0.9746 | 0.9641 |
234
+ | cosine_f1_threshold | 0.7773 | 0.7573 |
235
+ | cosine_precision | 0.9748 | 0.9386 |
236
+ | cosine_recall | 0.9743 | 0.991 |
237
+ | **cosine_ap** | **0.996** | **0.9953** |
238
+ | cosine_mcc | 0.9623 | 0.947 |
239
+
240
+ <!--
241
+ ## Bias, Risks and Limitations
242
+
243
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
244
+ -->
245
+
246
+ <!--
247
+ ### Recommendations
248
+
249
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
250
+ -->
251
+
252
+ ## Training Details
253
+
254
+ ### Training Dataset
255
+
256
+ #### query-hard-pos-neg-doc-pairs-statictable
257
+
258
+ * Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f)
259
+ * Size: 25,580 training samples
260
+ * Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
261
+ * Approximate statistics based on the first 1000 samples:
262
+ | | query | doc | label |
263
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
264
+ | type | string | string | int |
265
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.12 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 20.47 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>0: ~70.80%</li><li>1: ~29.20%</li></ul> |
266
+ * Samples:
267
+ | query | doc | label |
268
+ |:-------------------------------------------------------------------------|:----------------------------------------------|:---------------|
269
+ | <code>Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
270
+ | <code>status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
271
+ | <code>STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
272
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
273
+
274
+ ### Evaluation Dataset
275
+
276
+ #### query-hard-pos-neg-doc-pairs-statictable
277
+
278
+ * Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f)
279
+ * Size: 5,479 evaluation samples
280
+ * Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
281
+ * Approximate statistics based on the first 1000 samples:
282
+ | | query | doc | label |
283
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
284
+ | type | string | string | int |
285
+ | details | <ul><li>min: 7 tokens</li><li>mean: 17.85 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 21.2 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>0: ~71.50%</li><li>1: ~28.50%</li></ul> |
286
+ * Samples:
287
+ | query | doc | label |
288
+ |:-----------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|:---------------|
289
+ | <code>Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
290
+ | <code>bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
291
+ | <code>BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
292
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
293
+
294
+ ### Training Hyperparameters
295
+ #### Non-Default Hyperparameters
296
+
297
+ - `eval_strategy`: steps
298
+ - `per_device_train_batch_size`: 32
299
+ - `per_device_eval_batch_size`: 32
300
+ - `num_train_epochs`: 2
301
+ - `warmup_ratio`: 0.1
302
+ - `fp16`: True
303
+ - `load_best_model_at_end`: True
304
+ - `eval_on_start`: True
305
+
306
+ #### All Hyperparameters
307
+ <details><summary>Click to expand</summary>
308
+
309
+ - `overwrite_output_dir`: False
310
+ - `do_predict`: False
311
+ - `eval_strategy`: steps
312
+ - `prediction_loss_only`: True
313
+ - `per_device_train_batch_size`: 32
314
+ - `per_device_eval_batch_size`: 32
315
+ - `per_gpu_train_batch_size`: None
316
+ - `per_gpu_eval_batch_size`: None
317
+ - `gradient_accumulation_steps`: 1
318
+ - `eval_accumulation_steps`: None
319
+ - `torch_empty_cache_steps`: None
320
+ - `learning_rate`: 5e-05
321
+ - `weight_decay`: 0.0
322
+ - `adam_beta1`: 0.9
323
+ - `adam_beta2`: 0.999
324
+ - `adam_epsilon`: 1e-08
325
+ - `max_grad_norm`: 1.0
326
+ - `num_train_epochs`: 2
327
+ - `max_steps`: -1
328
+ - `lr_scheduler_type`: linear
329
+ - `lr_scheduler_kwargs`: {}
330
+ - `warmup_ratio`: 0.1
331
+ - `warmup_steps`: 0
332
+ - `log_level`: passive
333
+ - `log_level_replica`: warning
334
+ - `log_on_each_node`: True
335
+ - `logging_nan_inf_filter`: True
336
+ - `save_safetensors`: True
337
+ - `save_on_each_node`: False
338
+ - `save_only_model`: False
339
+ - `restore_callback_states_from_checkpoint`: False
340
+ - `no_cuda`: False
341
+ - `use_cpu`: False
342
+ - `use_mps_device`: False
343
+ - `seed`: 42
344
+ - `data_seed`: None
345
+ - `jit_mode_eval`: False
346
+ - `use_ipex`: False
347
+ - `bf16`: False
348
+ - `fp16`: True
349
+ - `fp16_opt_level`: O1
350
+ - `half_precision_backend`: auto
351
+ - `bf16_full_eval`: False
352
+ - `fp16_full_eval`: False
353
+ - `tf32`: None
354
+ - `local_rank`: 0
355
+ - `ddp_backend`: None
356
+ - `tpu_num_cores`: None
357
+ - `tpu_metrics_debug`: False
358
+ - `debug`: []
359
+ - `dataloader_drop_last`: False
360
+ - `dataloader_num_workers`: 0
361
+ - `dataloader_prefetch_factor`: None
362
+ - `past_index`: -1
363
+ - `disable_tqdm`: False
364
+ - `remove_unused_columns`: True
365
+ - `label_names`: None
366
+ - `load_best_model_at_end`: True
367
+ - `ignore_data_skip`: False
368
+ - `fsdp`: []
369
+ - `fsdp_min_num_params`: 0
370
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
371
+ - `fsdp_transformer_layer_cls_to_wrap`: None
372
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
373
+ - `deepspeed`: None
374
+ - `label_smoothing_factor`: 0.0
375
+ - `optim`: adamw_torch
376
+ - `optim_args`: None
377
+ - `adafactor`: False
378
+ - `group_by_length`: False
379
+ - `length_column_name`: length
380
+ - `ddp_find_unused_parameters`: None
381
+ - `ddp_bucket_cap_mb`: None
382
+ - `ddp_broadcast_buffers`: False
383
+ - `dataloader_pin_memory`: True
384
+ - `dataloader_persistent_workers`: False
385
+ - `skip_memory_metrics`: True
386
+ - `use_legacy_prediction_loop`: False
387
+ - `push_to_hub`: False
388
+ - `resume_from_checkpoint`: None
389
+ - `hub_model_id`: None
390
+ - `hub_strategy`: every_save
391
+ - `hub_private_repo`: None
392
+ - `hub_always_push`: False
393
+ - `gradient_checkpointing`: False
394
+ - `gradient_checkpointing_kwargs`: None
395
+ - `include_inputs_for_metrics`: False
396
+ - `include_for_metrics`: []
397
+ - `eval_do_concat_batches`: True
398
+ - `fp16_backend`: auto
399
+ - `push_to_hub_model_id`: None
400
+ - `push_to_hub_organization`: None
401
+ - `mp_parameters`:
402
+ - `auto_find_batch_size`: False
403
+ - `full_determinism`: False
404
+ - `torchdynamo`: None
405
+ - `ray_scope`: last
406
+ - `ddp_timeout`: 1800
407
+ - `torch_compile`: False
408
+ - `torch_compile_backend`: None
409
+ - `torch_compile_mode`: None
410
+ - `dispatch_batches`: None
411
+ - `split_batches`: None
412
+ - `include_tokens_per_second`: False
413
+ - `include_num_input_tokens_seen`: False
414
+ - `neftune_noise_alpha`: None
415
+ - `optim_target_modules`: None
416
+ - `batch_eval_metrics`: False
417
+ - `eval_on_start`: True
418
+ - `use_liger_kernel`: False
419
+ - `eval_use_gather_object`: False
420
+ - `average_tokens_across_devices`: False
421
+ - `prompts`: None
422
+ - `batch_sampler`: batch_sampler
423
+ - `multi_dataset_batch_sampler`: proportional
424
+
425
+ </details>
426
+
427
+ ### Training Logs
428
+ | Epoch | Step | Training Loss | Validation Loss | allstats-semantic-large-v1_test_cosine_ap | allstats-semantic-large-v1_dev_cosine_ap |
429
+ |:--------:|:-------:|:-------------:|:---------------:|:-----------------------------------------:|:----------------------------------------:|
430
+ | -1 | -1 | - | - | 0.9750 | - |
431
+ | 0 | 0 | - | 0.1850 | - | 0.9766 |
432
+ | 0.025 | 20 | 0.1581 | 0.1538 | - | 0.9789 |
433
+ | 0.05 | 40 | 0.1898 | 0.1200 | - | 0.9848 |
434
+ | 0.075 | 60 | 0.0647 | 0.1096 | - | 0.9855 |
435
+ | 0.1 | 80 | 0.118 | 0.1242 | - | 0.9831 |
436
+ | 0.125 | 100 | 0.0545 | 0.1301 | - | 0.9827 |
437
+ | 0.15 | 120 | 0.0646 | 0.1114 | - | 0.9862 |
438
+ | 0.175 | 140 | 0.0775 | 0.1005 | - | 0.9865 |
439
+ | 0.2 | 160 | 0.0664 | 0.1234 | - | 0.9840 |
440
+ | 0.225 | 180 | 0.067 | 0.1349 | - | 0.9850 |
441
+ | 0.25 | 200 | 0.0823 | 0.1032 | - | 0.9877 |
442
+ | 0.275 | 220 | 0.0895 | 0.1432 | - | 0.9808 |
443
+ | 0.3 | 240 | 0.0666 | 0.1389 | - | 0.9809 |
444
+ | 0.325 | 260 | 0.0872 | 0.1122 | - | 0.9844 |
445
+ | 0.35 | 280 | 0.0551 | 0.1435 | - | 0.9838 |
446
+ | 0.375 | 300 | 0.0919 | 0.1068 | - | 0.9886 |
447
+ | 0.4 | 320 | 0.0437 | 0.0903 | - | 0.9861 |
448
+ | 0.425 | 340 | 0.0619 | 0.1065 | - | 0.9850 |
449
+ | 0.45 | 360 | 0.0469 | 0.1346 | - | 0.9844 |
450
+ | 0.475 | 380 | 0.029 | 0.1351 | - | 0.9828 |
451
+ | 0.5 | 400 | 0.0511 | 0.1123 | - | 0.9843 |
452
+ | 0.525 | 420 | 0.0394 | 0.1434 | - | 0.9815 |
453
+ | 0.55 | 440 | 0.0178 | 0.1577 | - | 0.9769 |
454
+ | 0.575 | 460 | 0.047 | 0.1253 | - | 0.9796 |
455
+ | 0.6 | 480 | 0.0066 | 0.1262 | - | 0.9791 |
456
+ | 0.625 | 500 | 0.0383 | 0.1277 | - | 0.9814 |
457
+ | 0.65 | 520 | 0.0084 | 0.1361 | - | 0.9845 |
458
+ | 0.675 | 540 | 0.0409 | 0.1202 | - | 0.9872 |
459
+ | 0.7 | 560 | 0.0372 | 0.1245 | - | 0.9854 |
460
+ | 0.725 | 580 | 0.0353 | 0.1469 | - | 0.9817 |
461
+ | 0.75 | 600 | 0.0429 | 0.1225 | - | 0.9836 |
462
+ | 0.775 | 620 | 0.0595 | 0.1082 | - | 0.9862 |
463
+ | 0.8 | 640 | 0.0266 | 0.0886 | - | 0.9903 |
464
+ | 0.825 | 660 | 0.0178 | 0.0712 | - | 0.9918 |
465
+ | **0.85** | **680** | **0.0567** | **0.0511** | **-** | **0.9936** |
466
+ | 0.875 | 700 | 0.0142 | 0.0538 | - | 0.9916 |
467
+ | 0.9 | 720 | 0.0136 | 0.0726 | - | 0.9890 |
468
+ | 0.925 | 740 | 0.0192 | 0.0707 | - | 0.9884 |
469
+ | 0.95 | 760 | 0.0253 | 0.0937 | - | 0.9872 |
470
+ | 0.975 | 780 | 0.0149 | 0.0792 | - | 0.9878 |
471
+ | 1.0 | 800 | 0.0231 | 0.0912 | - | 0.9879 |
472
+ | 1.025 | 820 | 0.0 | 0.1030 | - | 0.9871 |
473
+ | 1.05 | 840 | 0.0096 | 0.0990 | - | 0.9876 |
474
+ | 1.075 | 860 | 0.0 | 0.1032 | - | 0.9868 |
475
+ | 1.1 | 880 | 0.0 | 0.1037 | - | 0.9866 |
476
+ | 1.125 | 900 | 0.0 | 0.1038 | - | 0.9866 |
477
+ | 1.15 | 920 | 0.0 | 0.1038 | - | 0.9866 |
478
+ | 1.175 | 940 | 0.0 | 0.1038 | - | 0.9866 |
479
+ | 1.2 | 960 | 0.0121 | 0.1030 | - | 0.9895 |
480
+ | 1.225 | 980 | 0.0 | 0.1035 | - | 0.9899 |
481
+ | 1.25 | 1000 | 0.0 | 0.1040 | - | 0.9898 |
482
+ | 1.275 | 1020 | 0.0 | 0.1049 | - | 0.9898 |
483
+ | 1.3 | 1040 | 0.0 | 0.1049 | - | 0.9898 |
484
+ | 1.325 | 1060 | 0.0067 | 0.1015 | - | 0.9903 |
485
+ | 1.35 | 1080 | 0.0 | 0.1048 | - | 0.9901 |
486
+ | 1.375 | 1100 | 0.0159 | 0.0956 | - | 0.9910 |
487
+ | 1.4 | 1120 | 0.0067 | 0.0818 | - | 0.9926 |
488
+ | 1.425 | 1140 | 0.0151 | 0.0838 | - | 0.9926 |
489
+ | 1.45 | 1160 | 0.0 | 0.0889 | - | 0.9920 |
490
+ | 1.475 | 1180 | 0.0 | 0.0894 | - | 0.9920 |
491
+ | 1.5 | 1200 | 0.023 | 0.0696 | - | 0.9935 |
492
+ | 1.525 | 1220 | 0.0 | 0.0693 | - | 0.9935 |
493
+ | 1.55 | 1240 | 0.0 | 0.0711 | - | 0.9935 |
494
+ | 1.575 | 1260 | 0.0 | 0.0711 | - | 0.9935 |
495
+ | 1.6 | 1280 | 0.0 | 0.0711 | - | 0.9935 |
496
+ | 1.625 | 1300 | 0.0176 | 0.0743 | - | 0.9936 |
497
+ | 1.65 | 1320 | 0.0 | 0.0806 | - | 0.9931 |
498
+ | 1.675 | 1340 | 0.0 | 0.0817 | - | 0.9931 |
499
+ | 1.7 | 1360 | 0.007 | 0.0809 | - | 0.9929 |
500
+ | 1.725 | 1380 | 0.0209 | 0.0700 | - | 0.9941 |
501
+ | 1.75 | 1400 | 0.0068 | 0.0605 | - | 0.9949 |
502
+ | 1.775 | 1420 | 0.0069 | 0.0564 | - | 0.9951 |
503
+ | 1.8 | 1440 | 0.0097 | 0.0559 | - | 0.9953 |
504
+ | 1.825 | 1460 | 0.0 | 0.0557 | - | 0.9953 |
505
+ | 1.85 | 1480 | 0.0 | 0.0557 | - | 0.9953 |
506
+ | 1.875 | 1500 | 0.0 | 0.0557 | - | 0.9953 |
507
+ | 1.9 | 1520 | 0.0 | 0.0557 | - | 0.9953 |
508
+ | 1.925 | 1540 | 0.0 | 0.0557 | - | 0.9953 |
509
+ | 1.95 | 1560 | 0.0089 | 0.0544 | - | 0.9953 |
510
+ | 1.975 | 1580 | 0.0 | 0.0544 | - | 0.9953 |
511
+ | 2.0 | 1600 | 0.0 | 0.0544 | - | 0.9953 |
512
+ | -1 | -1 | - | - | 0.9960 | - |
513
+
514
+ * The bold row denotes the saved checkpoint.
515
+
516
+ ### Framework Versions
517
+ - Python: 3.10.12
518
+ - Sentence Transformers: 3.4.0
519
+ - Transformers: 4.48.1
520
+ - PyTorch: 2.5.1+cu124
521
+ - Accelerate: 1.3.0
522
+ - Datasets: 3.2.0
523
+ - Tokenizers: 0.21.0
524
+
525
+ ## Citation
526
+
527
+ ### BibTeX
528
+
529
+ #### Sentence Transformers
530
+ ```bibtex
531
+ @inproceedings{reimers-2019-sentence-bert,
532
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
533
+ author = "Reimers, Nils and Gurevych, Iryna",
534
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
535
+ month = "11",
536
+ year = "2019",
537
+ publisher = "Association for Computational Linguistics",
538
+ url = "https://arxiv.org/abs/1908.10084",
539
+ }
540
+ ```
541
+
542
+ <!--
543
+ ## Glossary
544
+
545
+ *Clearly define terms in order to be accessible across audiences.*
546
+ -->
547
+
548
+ <!--
549
+ ## Model Card Authors
550
+
551
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
552
+ -->
553
+
554
+ <!--
555
+ ## Model Card Contact
556
+
557
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
558
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "denaya/indoSBERT-Large",
3
+ "_num_labels": 5,
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 4096,
22
+ "label2id": {
23
+ "LABEL_0": 0,
24
+ "LABEL_1": 1,
25
+ "LABEL_2": 2,
26
+ "LABEL_3": 3,
27
+ "LABEL_4": 4
28
+ },
29
+ "layer_norm_eps": 1e-12,
30
+ "max_position_embeddings": 512,
31
+ "model_type": "bert",
32
+ "num_attention_heads": 16,
33
+ "num_hidden_layers": 24,
34
+ "output_past": true,
35
+ "pad_token_id": 0,
36
+ "pooler_fc_size": 768,
37
+ "pooler_num_attention_heads": 12,
38
+ "pooler_num_fc_layers": 3,
39
+ "pooler_size_per_head": 128,
40
+ "pooler_type": "first_token_transform",
41
+ "position_embedding_type": "absolute",
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.48.1",
44
+ "type_vocab_size": 2,
45
+ "use_cache": true,
46
+ "vocab_size": 30522
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0",
4
+ "transformers": "4.48.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0206672dd1f3dafdee2edb3d66093c3923e95c4d9099f5b0cd179da6ae16cd1
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 256,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff