|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:25580 |
|
- loss:OnlineContrastiveLoss |
|
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
widget: |
|
- source_sentence: ikhtisar arus kas triwulan 1, 2004 (miliar) |
|
sentences: |
|
- Balita (0-59 Bulan) Menurut Status Gizi, Tahun 1998-2005 |
|
- Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Luar Pulau |
|
Jawa dan Sumatera dengan Nasional (2018=100) |
|
- Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan |
|
dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tengah, 2018-2023 |
|
- source_sentence: BaIgaimana gambaran neraca arus dana dUi Indonesia pada kuartal |
|
kedua tahun 2015? |
|
sentences: |
|
- Jumlah Sekolah, Guru, dan Murid Sekolah Menengah Pertama (SMP) di Bawah Kementrian |
|
Pendidikan dan Kebudayaan Menurut Provinsi 2011/2012-2015/2016 |
|
- Ringkasan Neraca Arus Dana Triwulan III Tahun 2003 (Miliar Rupiah) |
|
- Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan |
|
dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tenggara, 2018-2023 |
|
- source_sentence: Berapa persen pengeluaran orang di kotaa untuk makanan vs non-makanan, |
|
per provinsi, 2018? |
|
sentences: |
|
- Ekspor Tanaman Obat, Aromatik, dan Rempah-Rempah menurut Negara Tujuan Utama, |
|
2012-2023 |
|
- Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan Pendidikan Tertinggi |
|
yang Ditamatkan (ribu rupiah), 2017 |
|
- IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor), |
|
1996-2014 (1996=100) |
|
- source_sentence: Negara-negara asal impor crude oil dan produk turunannya tahun |
|
2002-2023 |
|
sentences: |
|
- Persentase Pengeluaran Rata-rata per Kapita Sebulan Menurut Kelompok Barang, Indonesia, |
|
1999, 2002-2023 |
|
- Rata-rata Pendapatan Bersih Berusaha Sendiri menurut Provinsi dan Pendidikan yang |
|
Ditamatkan (ribu rupiah), 2016 |
|
- Perkembangan Beberapa Agregat Pendapatan dan Pendapatan per Kapita Atas Dasar |
|
Harga Berlaku, 2010-2016 |
|
- source_sentence: Arus dana Q3 2006 |
|
sentences: |
|
- Posisi Simpanan Berjangka Rupiah pada Bank Umum dan BPR Menurut Golongan Pemilik |
|
(miliar rupiah), 2005-2018 |
|
- Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah) |
|
- Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok |
|
Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012 |
|
datasets: |
|
- yahyaabd/query-hard-pos-neg-doc-pairs-statictable |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
- cosine_accuracy_threshold |
|
- cosine_f1 |
|
- cosine_f1_threshold |
|
- cosine_precision |
|
- cosine_recall |
|
- cosine_ap |
|
- cosine_mcc |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
results: |
|
- task: |
|
type: binary-classification |
|
name: Binary Classification |
|
dataset: |
|
name: allstats semantic mini v1 test |
|
type: allstats-semantic-mini-v1_test |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.9808882417182381 |
|
name: Cosine Accuracy |
|
- type: cosine_accuracy_threshold |
|
value: 0.7710697650909424 |
|
name: Cosine Accuracy Threshold |
|
- type: cosine_f1 |
|
value: 0.9706129303106633 |
|
name: Cosine F1 |
|
- type: cosine_f1_threshold |
|
value: 0.7710697650909424 |
|
name: Cosine F1 Threshold |
|
- type: cosine_precision |
|
value: 0.9725182277061133 |
|
name: Cosine Precision |
|
- type: cosine_recall |
|
value: 0.9687150837988827 |
|
name: Cosine Recall |
|
- type: cosine_ap |
|
value: 0.995703716321768 |
|
name: Cosine Ap |
|
- type: cosine_mcc |
|
value: 0.9564565560407811 |
|
name: Cosine Mcc |
|
- task: |
|
type: binary-classification |
|
name: Binary Classification |
|
dataset: |
|
name: allstats semantic mini v1 dev |
|
type: allstats-semantic-mini-v1_dev |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.9753604672385472 |
|
name: Cosine Accuracy |
|
- type: cosine_accuracy_threshold |
|
value: 0.773653507232666 |
|
name: Cosine Accuracy Threshold |
|
- type: cosine_f1 |
|
value: 0.9622799664710814 |
|
name: Cosine F1 |
|
- type: cosine_f1_threshold |
|
value: 0.773653507232666 |
|
name: Cosine F1 Threshold |
|
- type: cosine_precision |
|
value: 0.9545454545454546 |
|
name: Cosine Precision |
|
- type: cosine_recall |
|
value: 0.9701408450704225 |
|
name: Cosine Recall |
|
- type: cosine_ap |
|
value: 0.9927278433062661 |
|
name: Cosine Ap |
|
- type: cosine_mcc |
|
value: 0.9440549314838564 |
|
name: Cosine Mcc |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 8d6b950845285729817bf8e1af1861502c2fed0c --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 384 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("yahyaabd/allstats-search-miniLM-v1-6") |
|
# Run inference |
|
sentences = [ |
|
'Arus dana Q3 2006', |
|
'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)', |
|
'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Binary Classification |
|
|
|
* Datasets: `allstats-semantic-mini-v1_test` and `allstats-semantic-mini-v1_dev` |
|
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) |
|
|
|
| Metric | allstats-semantic-mini-v1_test | allstats-semantic-mini-v1_dev | |
|
|:--------------------------|:-------------------------------|:------------------------------| |
|
| cosine_accuracy | 0.9809 | 0.9754 | |
|
| cosine_accuracy_threshold | 0.7711 | 0.7737 | |
|
| cosine_f1 | 0.9706 | 0.9623 | |
|
| cosine_f1_threshold | 0.7711 | 0.7737 | |
|
| cosine_precision | 0.9725 | 0.9545 | |
|
| cosine_recall | 0.9687 | 0.9701 | |
|
| **cosine_ap** | **0.9957** | **0.9927** | |
|
| cosine_mcc | 0.9565 | 0.9441 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### query-hard-pos-neg-doc-pairs-statictable |
|
|
|
* Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f) |
|
* Size: 25,580 training samples |
|
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | doc | label | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 20.14 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 24.9 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>0: ~70.80%</li><li>1: ~29.20%</li></ul> | |
|
* Samples: |
|
| query | doc | label | |
|
|:-------------------------------------------------------------------------|:----------------------------------------------|:---------------| |
|
| <code>Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> | |
|
| <code>status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> | |
|
| <code>STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> | |
|
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss) |
|
|
|
### Evaluation Dataset |
|
|
|
#### query-hard-pos-neg-doc-pairs-statictable |
|
|
|
* Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f) |
|
* Size: 5,479 evaluation samples |
|
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | doc | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 20.78 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.28 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>0: ~71.50%</li><li>1: ~28.50%</li></ul> | |
|
* Samples: |
|
| query | doc | label | |
|
|:-----------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|:---------------| |
|
| <code>Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> | |
|
| <code>bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> | |
|
| <code>BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> | |
|
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss) |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `warmup_ratio`: 0.2 |
|
- `fp16`: True |
|
- `load_best_model_at_end`: True |
|
- `eval_on_start`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 3 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.2 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: True |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-mini-v1_test_cosine_ap | allstats-semantic-mini-v1_dev_cosine_ap | |
|
|:---------:|:--------:|:-------------:|:---------------:|:----------------------------------------:|:---------------------------------------:| |
|
| -1 | -1 | - | - | 0.8910 | - | |
|
| 0 | 0 | - | 1.0484 | - | 0.8789 | |
|
| 0.025 | 20 | 1.0003 | 0.9175 | - | 0.8856 | |
|
| 0.05 | 40 | 0.6667 | 0.6433 | - | 0.9010 | |
|
| 0.075 | 60 | 0.5982 | 0.5203 | - | 0.9145 | |
|
| 0.1 | 80 | 0.4476 | 0.4175 | - | 0.9344 | |
|
| 0.125 | 100 | 0.3489 | 0.3152 | - | 0.9540 | |
|
| 0.15 | 120 | 0.1643 | 0.2726 | - | 0.9602 | |
|
| 0.175 | 140 | 0.2126 | 0.2525 | - | 0.9631 | |
|
| 0.2 | 160 | 0.1797 | 0.2151 | - | 0.9715 | |
|
| 0.225 | 180 | 0.1304 | 0.1895 | - | 0.9756 | |
|
| 0.25 | 200 | 0.1714 | 0.2142 | - | 0.9767 | |
|
| 0.275 | 220 | 0.1758 | 0.1840 | - | 0.9791 | |
|
| 0.3 | 240 | 0.0562 | 0.1723 | - | 0.9801 | |
|
| 0.325 | 260 | 0.0863 | 0.1656 | - | 0.9773 | |
|
| 0.35 | 280 | 0.12 | 0.1806 | - | 0.9788 | |
|
| 0.375 | 300 | 0.0982 | 0.1792 | - | 0.9769 | |
|
| 0.4 | 320 | 0.0421 | 0.1724 | - | 0.9783 | |
|
| 0.425 | 340 | 0.1078 | 0.2158 | - | 0.9733 | |
|
| 0.45 | 360 | 0.0882 | 0.1501 | - | 0.9822 | |
|
| 0.475 | 380 | 0.0251 | 0.1334 | - | 0.9843 | |
|
| 0.5 | 400 | 0.0267 | 0.1238 | - | 0.9855 | |
|
| 0.525 | 420 | 0.0899 | 0.1404 | - | 0.9859 | |
|
| 0.55 | 440 | 0.0782 | 0.1253 | - | 0.9852 | |
|
| 0.575 | 460 | 0.1209 | 0.1772 | - | 0.9768 | |
|
| 0.6 | 480 | 0.0643 | 0.1817 | - | 0.9763 | |
|
| 0.625 | 500 | 0.1051 | 0.2030 | - | 0.9748 | |
|
| 0.65 | 520 | 0.0494 | 0.1405 | - | 0.9814 | |
|
| 0.675 | 540 | 0.0548 | 0.1175 | - | 0.9831 | |
|
| 0.7 | 560 | 0.121 | 0.1597 | - | 0.9819 | |
|
| 0.725 | 580 | 0.0642 | 0.1675 | - | 0.9811 | |
|
| 0.75 | 600 | 0.0618 | 0.1539 | - | 0.9827 | |
|
| 0.775 | 620 | 0.0745 | 0.1149 | - | 0.9845 | |
|
| 0.8 | 640 | 0.0452 | 0.1562 | - | 0.9797 | |
|
| 0.825 | 660 | 0.0816 | 0.1580 | - | 0.9816 | |
|
| 0.85 | 680 | 0.0957 | 0.1192 | - | 0.9830 | |
|
| 0.875 | 700 | 0.06 | 0.1100 | - | 0.9863 | |
|
| 0.9 | 720 | 0.018 | 0.1300 | - | 0.9822 | |
|
| 0.925 | 740 | 0.0213 | 0.1267 | - | 0.9843 | |
|
| 0.95 | 760 | 0.0263 | 0.1687 | - | 0.9796 | |
|
| 0.975 | 780 | 0.032 | 0.1250 | - | 0.9849 | |
|
| 1.0 | 800 | 0.065 | 0.1363 | - | 0.9828 | |
|
| 1.025 | 820 | 0.0174 | 0.1394 | - | 0.9835 | |
|
| 1.05 | 840 | 0.0568 | 0.1124 | - | 0.9849 | |
|
| 1.075 | 860 | 0.0464 | 0.1174 | - | 0.9826 | |
|
| 1.1 | 880 | 0.013 | 0.1178 | - | 0.9814 | |
|
| 1.125 | 900 | 0.0331 | 0.1239 | - | 0.9812 | |
|
| 1.15 | 920 | 0.0416 | 0.1240 | - | 0.9817 | |
|
| 1.175 | 940 | 0.0111 | 0.1303 | - | 0.9840 | |
|
| 1.2 | 960 | 0.0441 | 0.1156 | - | 0.9854 | |
|
| 1.225 | 980 | 0.0243 | 0.0972 | - | 0.9879 | |
|
| 1.25 | 1000 | 0.0 | 0.0917 | - | 0.9877 | |
|
| 1.275 | 1020 | 0.0477 | 0.0863 | - | 0.9885 | |
|
| 1.3 | 1040 | 0.0108 | 0.1029 | - | 0.9877 | |
|
| 1.325 | 1060 | 0.0 | 0.1103 | - | 0.9869 | |
|
| 1.35 | 1080 | 0.0134 | 0.1113 | - | 0.9871 | |
|
| 1.375 | 1100 | 0.0 | 0.1146 | - | 0.9870 | |
|
| 1.4 | 1120 | 0.0132 | 0.1218 | - | 0.9862 | |
|
| 1.425 | 1140 | 0.0223 | 0.0948 | - | 0.9883 | |
|
| 1.45 | 1160 | 0.0183 | 0.0883 | - | 0.9883 | |
|
| 1.475 | 1180 | 0.0378 | 0.0961 | - | 0.9881 | |
|
| 1.5 | 1200 | 0.0114 | 0.0961 | - | 0.9882 | |
|
| 1.525 | 1220 | 0.0143 | 0.1020 | - | 0.9861 | |
|
| 1.55 | 1240 | 0.0183 | 0.0867 | - | 0.9888 | |
|
| 1.575 | 1260 | 0.0 | 0.0858 | - | 0.9892 | |
|
| 1.6 | 1280 | 0.0 | 0.0858 | - | 0.9892 | |
|
| 1.625 | 1300 | 0.0 | 0.0858 | - | 0.9892 | |
|
| 1.65 | 1320 | 0.0172 | 0.0846 | - | 0.9896 | |
|
| 1.675 | 1340 | 0.0153 | 0.0754 | - | 0.9917 | |
|
| 1.7 | 1360 | 0.0163 | 0.0770 | - | 0.9913 | |
|
| 1.725 | 1380 | 0.0167 | 0.0943 | - | 0.9901 | |
|
| 1.75 | 1400 | 0.0148 | 0.0964 | - | 0.9899 | |
|
| 1.775 | 1420 | 0.0065 | 0.0930 | - | 0.9902 | |
|
| 1.8 | 1440 | 0.0 | 0.0945 | - | 0.9904 | |
|
| 1.825 | 1460 | 0.0067 | 0.0991 | - | 0.9895 | |
|
| 1.85 | 1480 | 0.0194 | 0.0996 | - | 0.9894 | |
|
| 1.875 | 1500 | 0.0 | 0.0953 | - | 0.9903 | |
|
| 1.9 | 1520 | 0.0236 | 0.0883 | - | 0.9906 | |
|
| 1.925 | 1540 | 0.0111 | 0.0858 | - | 0.9904 | |
|
| 1.95 | 1560 | 0.0 | 0.0878 | - | 0.9903 | |
|
| 1.975 | 1580 | 0.0147 | 0.0849 | - | 0.9906 | |
|
| 2.0 | 1600 | 0.0154 | 0.0852 | - | 0.9902 | |
|
| 2.025 | 1620 | 0.0067 | 0.0861 | - | 0.9903 | |
|
| 2.05 | 1640 | 0.019 | 0.0859 | - | 0.9907 | |
|
| 2.075 | 1660 | 0.0083 | 0.0875 | - | 0.9908 | |
|
| 2.1 | 1680 | 0.0067 | 0.0771 | - | 0.9917 | |
|
| 2.125 | 1700 | 0.0 | 0.0773 | - | 0.9917 | |
|
| 2.15 | 1720 | 0.0071 | 0.0771 | - | 0.9919 | |
|
| 2.175 | 1740 | 0.0064 | 0.0756 | - | 0.9916 | |
|
| 2.2 | 1760 | 0.0 | 0.0772 | - | 0.9916 | |
|
| 2.225 | 1780 | 0.0 | 0.0772 | - | 0.9915 | |
|
| 2.25 | 1800 | 0.0158 | 0.0734 | - | 0.9920 | |
|
| 2.275 | 1820 | 0.0 | 0.0730 | - | 0.9920 | |
|
| 2.3 | 1840 | 0.0 | 0.0733 | - | 0.9920 | |
|
| 2.325 | 1860 | 0.0161 | 0.0681 | - | 0.9922 | |
|
| 2.35 | 1880 | 0.0 | 0.0713 | - | 0.9920 | |
|
| 2.375 | 1900 | 0.0 | 0.0721 | - | 0.9920 | |
|
| 2.4 | 1920 | 0.0 | 0.0722 | - | 0.9920 | |
|
| 2.425 | 1940 | 0.0064 | 0.0648 | - | 0.9928 | |
|
| 2.45 | 1960 | 0.0068 | 0.0641 | - | 0.9930 | |
|
| **2.475** | **1980** | **0.0069** | **0.0635** | **-** | **0.9929** | |
|
| 2.5 | 2000 | 0.0066 | 0.0657 | - | 0.9929 | |
|
| 2.525 | 2020 | 0.0 | 0.0657 | - | 0.9930 | |
|
| 2.55 | 2040 | 0.0139 | 0.0657 | - | 0.9931 | |
|
| 2.575 | 2060 | 0.0 | 0.0667 | - | 0.9931 | |
|
| 2.6 | 2080 | 0.0 | 0.0666 | - | 0.9931 | |
|
| 2.625 | 2100 | 0.0 | 0.0666 | - | 0.9931 | |
|
| 2.65 | 2120 | 0.0 | 0.0666 | - | 0.9931 | |
|
| 2.675 | 2140 | 0.0 | 0.0667 | - | 0.9931 | |
|
| 2.7 | 2160 | 0.0 | 0.0666 | - | 0.9931 | |
|
| 2.725 | 2180 | 0.0 | 0.0666 | - | 0.9931 | |
|
| 2.75 | 2200 | 0.0071 | 0.0665 | - | 0.9931 | |
|
| 2.775 | 2220 | 0.0 | 0.0671 | - | 0.9931 | |
|
| 2.8 | 2240 | 0.0071 | 0.0692 | - | 0.9928 | |
|
| 2.825 | 2260 | 0.0 | 0.0700 | - | 0.9927 | |
|
| 2.85 | 2280 | 0.0068 | 0.0688 | - | 0.9927 | |
|
| 2.875 | 2300 | 0.0 | 0.0688 | - | 0.9927 | |
|
| 2.9 | 2320 | 0.0 | 0.0688 | - | 0.9927 | |
|
| 2.925 | 2340 | 0.0 | 0.0688 | - | 0.9927 | |
|
| 2.95 | 2360 | 0.0 | 0.0688 | - | 0.9927 | |
|
| 2.975 | 2380 | 0.0 | 0.0688 | - | 0.9927 | |
|
| 3.0 | 2400 | 0.0 | 0.0688 | - | 0.9927 | |
|
| -1 | -1 | - | - | 0.9957 | - | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.4.0 |
|
- Transformers: 4.48.1 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.3.0 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |