yahyaabd commited on
Commit
3e7aa22
·
verified ·
1 Parent(s): f4888f1

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,590 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:25551
8
+ - loss:OnlineContrastiveLoss
9
+ base_model: sentence-transformers/paraphrase-MiniLM-L12-v2
10
+ widget:
11
+ - source_sentence: Berapa gaji ratarata buruhkaryawan di Indonesia lihat dari umur
12
+ dan lapangan pekerjaannya 2019
13
+ sentences:
14
+ - Rasio laju peningkatan konsumsi tanah dengan laju pertumbuhan penduduk
15
+ - Rata-rata UpahGaji Bersih sebulan Buruh/Karyawan Pegawai Menurut Kelompok Umur
16
+ dan lapangan pekerjaan utama, 2019
17
+ - Ringkasan Neraca Arus Dana, Triwulan Pertama, 2005, (Miliar Rupiah)
18
+ - source_sentence: Average monthly net wage/salary of employees by age group and type
19
+ of work (Rupiah), 2018
20
+ sentences:
21
+ - Ringkasan Neraca Arus Dana, Triwulan III, 2014**), (Miliar Rupiah)
22
+ - Nilai Produksi dan Biaya Produksi Rumah Tangga Usaha Peternakan Menurut Jenis
23
+ Ternak, 2014
24
+ - Rekapitulasi Laporan Posisi Keuangan Perusahaan Penyelenggara Program Asuransi
25
+ Wajib dan BPJS Per 31 Desember (miliar rupiah) 2000-2021
26
+ - source_sentence: jumlah pembangunan fasilitas sekolah baru
27
+ sentences:
28
+ - Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Pendidikan Tertinggi
29
+ yang Ditamatkan dan Lapangan Pekerjaan Utama di 9 Sektor (rupiah), 2017
30
+ - Posisi Kredit Perbankan1dalam Rupiah dan Valuta Asing Menurut Sektor Ekonomi (miliar
31
+ rupiah), 2016-2018
32
+ - Angka Kematian Bayi/AKB (Infant Mortality Rate/IMR) Hasil Long Form SP2020 Menurut
33
+ Provinsi/Kabupaten/Kota, 2020
34
+ - source_sentence: Data Pendapatan Rata-rata Orang Yang Berusaha Sendiri Per Provinsi,
35
+ Berdasarkan Lapangan Pekerjaan Utama (2020)
36
+ sentences:
37
+ - Nilai Pendapatan Disposabel Menurut Golongan Rumah Tangga (miliar rupiah), 2000,
38
+ 2005, dan 2008
39
+ - IHK dan Rata-rata Upah per Bulan Buruh Pertambangan di Bawah Mandor (Supervisor),
40
+ 1996-2014 (1996=100)
41
+ - Ringkasan Neraca Arus Dana Tahun 2004 (Miliar Rupiah)
42
+ - source_sentence: Bagaimana perkembangan koperasi di Indonesia, khususnya sekitar
43
+ tayun 2000?
44
+ sentences:
45
+ - Rata-Rata Harian Aliran Sungai, Tinggi Aliran, dan Volume Air di Beberapa Sungai
46
+ yang Daerah Pengalirannya Lebih dari 1.000 km2, 2000-2011
47
+ - Penduduk Berumur 15 Tahun Ke Atas yang Bekerja Selama Seminggu yang Lalu Menurut
48
+ Golongan Umur dan Jumlah Jam Kerja Seluruhnya, 2008 - 2024
49
+ - IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor),
50
+ 1996-2014 (1996=100)
51
+ datasets:
52
+ - yahyaabd/query-hard-pos-neg-doc-pairs-statictable
53
+ pipeline_tag: sentence-similarity
54
+ library_name: sentence-transformers
55
+ metrics:
56
+ - pearson_cosine
57
+ - spearman_cosine
58
+ model-index:
59
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L12-v2
60
+ results:
61
+ - task:
62
+ type: semantic-similarity
63
+ name: Semantic Similarity
64
+ dataset:
65
+ name: allstats semantic mini v1 eval
66
+ type: allstats-semantic-mini-v1-eval
67
+ metrics:
68
+ - type: pearson_cosine
69
+ value: 0.8479971660039509
70
+ name: Pearson Cosine
71
+ - type: spearman_cosine
72
+ value: 0.7745638757528484
73
+ name: Spearman Cosine
74
+ - task:
75
+ type: semantic-similarity
76
+ name: Semantic Similarity
77
+ dataset:
78
+ name: allstat search mini v1 test
79
+ type: allstat-search-mini-v1-test
80
+ metrics:
81
+ - type: pearson_cosine
82
+ value: 0.8538445733470035
83
+ name: Pearson Cosine
84
+ - type: spearman_cosine
85
+ value: 0.7767623851780713
86
+ name: Spearman Cosine
87
+ ---
88
+
89
+ # SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L12-v2
90
+
91
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L12-v2) on the [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
92
+
93
+ ## Model Details
94
+
95
+ ### Model Description
96
+ - **Model Type:** Sentence Transformer
97
+ - **Base model:** [sentence-transformers/paraphrase-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L12-v2) <!-- at revision 3f21b01a41e265ecb43cef6afeef20b7e578b637 -->
98
+ - **Maximum Sequence Length:** 256 tokens
99
+ - **Output Dimensionality:** 384 dimensions
100
+ - **Similarity Function:** Cosine Similarity
101
+ - **Training Dataset:**
102
+ - [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable)
103
+ <!-- - **Language:** Unknown -->
104
+ <!-- - **License:** Unknown -->
105
+
106
+ ### Model Sources
107
+
108
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
109
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
110
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
111
+
112
+ ### Full Model Architecture
113
+
114
+ ```
115
+ SentenceTransformer(
116
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
117
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
118
+ )
119
+ ```
120
+
121
+ ## Usage
122
+
123
+ ### Direct Usage (Sentence Transformers)
124
+
125
+ First install the Sentence Transformers library:
126
+
127
+ ```bash
128
+ pip install -U sentence-transformers
129
+ ```
130
+
131
+ Then you can load this model and run inference.
132
+ ```python
133
+ from sentence_transformers import SentenceTransformer
134
+
135
+ # Download from the 🤗 Hub
136
+ model = SentenceTransformer("yahyaabd/allstats-search-miniLM-v1")
137
+ # Run inference
138
+ sentences = [
139
+ 'Bagaimana perkembangan koperasi di Indonesia, khususnya sekitar tayun 2000?',
140
+ 'IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor), 1996-2014 (1996=100)',
141
+ 'Rata-Rata Harian Aliran Sungai, Tinggi Aliran, dan Volume Air di Beberapa Sungai yang Daerah Pengalirannya Lebih dari 1.000 km2, 2000-2011',
142
+ ]
143
+ embeddings = model.encode(sentences)
144
+ print(embeddings.shape)
145
+ # [3, 384]
146
+
147
+ # Get the similarity scores for the embeddings
148
+ similarities = model.similarity(embeddings, embeddings)
149
+ print(similarities.shape)
150
+ # [3, 3]
151
+ ```
152
+
153
+ <!--
154
+ ### Direct Usage (Transformers)
155
+
156
+ <details><summary>Click to see the direct usage in Transformers</summary>
157
+
158
+ </details>
159
+ -->
160
+
161
+ <!--
162
+ ### Downstream Usage (Sentence Transformers)
163
+
164
+ You can finetune this model on your own dataset.
165
+
166
+ <details><summary>Click to expand</summary>
167
+
168
+ </details>
169
+ -->
170
+
171
+ <!--
172
+ ### Out-of-Scope Use
173
+
174
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
175
+ -->
176
+
177
+ ## Evaluation
178
+
179
+ ### Metrics
180
+
181
+ #### Semantic Similarity
182
+
183
+ * Datasets: `allstats-semantic-mini-v1-eval` and `allstat-search-mini-v1-test`
184
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
185
+
186
+ | Metric | allstats-semantic-mini-v1-eval | allstat-search-mini-v1-test |
187
+ |:--------------------|:-------------------------------|:----------------------------|
188
+ | pearson_cosine | 0.848 | 0.8538 |
189
+ | **spearman_cosine** | **0.7746** | **0.7768** |
190
+
191
+ <!--
192
+ ## Bias, Risks and Limitations
193
+
194
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
195
+ -->
196
+
197
+ <!--
198
+ ### Recommendations
199
+
200
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
201
+ -->
202
+
203
+ ## Training Details
204
+
205
+ ### Training Dataset
206
+
207
+ #### query-hard-pos-neg-doc-pairs-statictable
208
+
209
+ * Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [25756d3](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/25756d36046bf92b56bce1b450fd080853688667)
210
+ * Size: 25,551 training samples
211
+ * Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
212
+ * Approximate statistics based on the first 1000 samples:
213
+ | | query | doc | label |
214
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
215
+ | type | string | string | int |
216
+ | details | <ul><li>min: 9 tokens</li><li>mean: 28.64 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 36.67 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>0: ~65.80%</li><li>1: ~34.20%</li></ul> |
217
+ * Samples:
218
+ | query | doc | label |
219
+ |:-----------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------|:---------------|
220
+ | <code>Gaji nominal, indeks upah: nominal & riil pekerja manufaktur non-mandor (2012=100), 2013-2014</code> | <code>Ringkasan Neraca Arus Dana, Triwulan I, 2007, (Miliar Rupiah)</code> | <code>0</code> |
221
+ | <code>gaji nominal, indeks upah: nominal & riil pekerja manufaktur non-mandor (2012=100), 2013-2014</code> | <code>Ringkasan Neraca Arus Dana, Triwulan I, 2007, (Miliar Rupiah)</code> | <code>0</code> |
222
+ | <code>GAJI NOMINAL, INDEKS UPAH: NOMINAL & RIIL PEKERJA MANUFAKTUR NON-MANDOR (2012=100), 2013-2014</code> | <code>Ringkasan Neraca Arus Dana, Triwulan I, 2007, (Miliar Rupiah)</code> | <code>0</code> |
223
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
224
+
225
+ ### Evaluation Dataset
226
+
227
+ #### query-hard-pos-neg-doc-pairs-statictable
228
+
229
+ * Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [25756d3](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/25756d36046bf92b56bce1b450fd080853688667)
230
+ * Size: 5,463 evaluation samples
231
+ * Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
232
+ * Approximate statistics based on the first 1000 samples:
233
+ | | query | doc | label |
234
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
235
+ | type | string | string | int |
236
+ | details | <ul><li>min: 10 tokens</li><li>mean: 29.3 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 37.1 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>0: ~73.20%</li><li>1: ~26.80%</li></ul> |
237
+ * Samples:
238
+ | query | doc | label |
239
+ |:------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------|:---------------|
240
+ | <code>Bagaimana penghasilan wirausahawan di Indonesia bervariasi per provinsi dan jenis pekerjaan utama di tahun 2016?</code> | <code>Realisasi Penerimaan dan Pengeluaran Pemerintah Desa (Juta Rupiah) di Perkotaan menurut Provinsi, 2000-2012</code> | <code>0</code> |
241
+ | <code>bagaimana penghasilan wirausahawan di indonesia bervariasi per provinsi dan jenis pekerjaan utama di tahun 2016?</code> | <code>Realisasi Penerimaan dan Pengeluaran Pemerintah Desa (Juta Rupiah) di Perkotaan menurut Provinsi, 2000-2012</code> | <code>0</code> |
242
+ | <code>BAGAIMANA PENGHASILAN WIRAUSAHAWAN DI INDONESIA BERVARIASI PER PROVINSI DAN JENIS PEKERJAAN UTAMA DI TAHUN 2016?</code> | <code>Realisasi Penerimaan dan Pengeluaran Pemerintah Desa (Juta Rupiah) di Perkotaan menurut Provinsi, 2000-2012</code> | <code>0</code> |
243
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
244
+
245
+ ### Training Hyperparameters
246
+ #### Non-Default Hyperparameters
247
+
248
+ - `eval_strategy`: steps
249
+ - `per_device_train_batch_size`: 32
250
+ - `per_device_eval_batch_size`: 32
251
+ - `num_train_epochs`: 4
252
+ - `warmup_ratio`: 0.1
253
+ - `fp16`: True
254
+ - `load_best_model_at_end`: True
255
+ - `eval_on_start`: True
256
+
257
+ #### All Hyperparameters
258
+ <details><summary>Click to expand</summary>
259
+
260
+ - `overwrite_output_dir`: False
261
+ - `do_predict`: False
262
+ - `eval_strategy`: steps
263
+ - `prediction_loss_only`: True
264
+ - `per_device_train_batch_size`: 32
265
+ - `per_device_eval_batch_size`: 32
266
+ - `per_gpu_train_batch_size`: None
267
+ - `per_gpu_eval_batch_size`: None
268
+ - `gradient_accumulation_steps`: 1
269
+ - `eval_accumulation_steps`: None
270
+ - `torch_empty_cache_steps`: None
271
+ - `learning_rate`: 5e-05
272
+ - `weight_decay`: 0.0
273
+ - `adam_beta1`: 0.9
274
+ - `adam_beta2`: 0.999
275
+ - `adam_epsilon`: 1e-08
276
+ - `max_grad_norm`: 1.0
277
+ - `num_train_epochs`: 4
278
+ - `max_steps`: -1
279
+ - `lr_scheduler_type`: linear
280
+ - `lr_scheduler_kwargs`: {}
281
+ - `warmup_ratio`: 0.1
282
+ - `warmup_steps`: 0
283
+ - `log_level`: passive
284
+ - `log_level_replica`: warning
285
+ - `log_on_each_node`: True
286
+ - `logging_nan_inf_filter`: True
287
+ - `save_safetensors`: True
288
+ - `save_on_each_node`: False
289
+ - `save_only_model`: False
290
+ - `restore_callback_states_from_checkpoint`: False
291
+ - `no_cuda`: False
292
+ - `use_cpu`: False
293
+ - `use_mps_device`: False
294
+ - `seed`: 42
295
+ - `data_seed`: None
296
+ - `jit_mode_eval`: False
297
+ - `use_ipex`: False
298
+ - `bf16`: False
299
+ - `fp16`: True
300
+ - `fp16_opt_level`: O1
301
+ - `half_precision_backend`: auto
302
+ - `bf16_full_eval`: False
303
+ - `fp16_full_eval`: False
304
+ - `tf32`: None
305
+ - `local_rank`: 0
306
+ - `ddp_backend`: None
307
+ - `tpu_num_cores`: None
308
+ - `tpu_metrics_debug`: False
309
+ - `debug`: []
310
+ - `dataloader_drop_last`: False
311
+ - `dataloader_num_workers`: 0
312
+ - `dataloader_prefetch_factor`: None
313
+ - `past_index`: -1
314
+ - `disable_tqdm`: False
315
+ - `remove_unused_columns`: True
316
+ - `label_names`: None
317
+ - `load_best_model_at_end`: True
318
+ - `ignore_data_skip`: False
319
+ - `fsdp`: []
320
+ - `fsdp_min_num_params`: 0
321
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
322
+ - `fsdp_transformer_layer_cls_to_wrap`: None
323
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
324
+ - `deepspeed`: None
325
+ - `label_smoothing_factor`: 0.0
326
+ - `optim`: adamw_torch
327
+ - `optim_args`: None
328
+ - `adafactor`: False
329
+ - `group_by_length`: False
330
+ - `length_column_name`: length
331
+ - `ddp_find_unused_parameters`: None
332
+ - `ddp_bucket_cap_mb`: None
333
+ - `ddp_broadcast_buffers`: False
334
+ - `dataloader_pin_memory`: True
335
+ - `dataloader_persistent_workers`: False
336
+ - `skip_memory_metrics`: True
337
+ - `use_legacy_prediction_loop`: False
338
+ - `push_to_hub`: False
339
+ - `resume_from_checkpoint`: None
340
+ - `hub_model_id`: None
341
+ - `hub_strategy`: every_save
342
+ - `hub_private_repo`: None
343
+ - `hub_always_push`: False
344
+ - `gradient_checkpointing`: False
345
+ - `gradient_checkpointing_kwargs`: None
346
+ - `include_inputs_for_metrics`: False
347
+ - `include_for_metrics`: []
348
+ - `eval_do_concat_batches`: True
349
+ - `fp16_backend`: auto
350
+ - `push_to_hub_model_id`: None
351
+ - `push_to_hub_organization`: None
352
+ - `mp_parameters`:
353
+ - `auto_find_batch_size`: False
354
+ - `full_determinism`: False
355
+ - `torchdynamo`: None
356
+ - `ray_scope`: last
357
+ - `ddp_timeout`: 1800
358
+ - `torch_compile`: False
359
+ - `torch_compile_backend`: None
360
+ - `torch_compile_mode`: None
361
+ - `dispatch_batches`: None
362
+ - `split_batches`: None
363
+ - `include_tokens_per_second`: False
364
+ - `include_num_input_tokens_seen`: False
365
+ - `neftune_noise_alpha`: None
366
+ - `optim_target_modules`: None
367
+ - `batch_eval_metrics`: False
368
+ - `eval_on_start`: True
369
+ - `use_liger_kernel`: False
370
+ - `eval_use_gather_object`: False
371
+ - `average_tokens_across_devices`: False
372
+ - `prompts`: None
373
+ - `batch_sampler`: batch_sampler
374
+ - `multi_dataset_batch_sampler`: proportional
375
+
376
+ </details>
377
+
378
+ ### Training Logs
379
+ <details><summary>Click to expand</summary>
380
+
381
+ | Epoch | Step | Training Loss | Validation Loss | allstats-semantic-mini-v1-eval_spearman_cosine | allstat-search-mini-v1-test_spearman_cosine |
382
+ |:----------:|:--------:|:-------------:|:---------------:|:----------------------------------------------:|:-------------------------------------------:|
383
+ | 0 | 0 | - | 1.0797 | 0.5314 | - |
384
+ | 0.0250 | 20 | 1.2823 | 0.9331 | 0.5510 | - |
385
+ | 0.0501 | 40 | 0.9562 | 0.6159 | 0.6492 | - |
386
+ | 0.0751 | 60 | 0.5872 | 0.4629 | 0.6913 | - |
387
+ | 0.1001 | 80 | 0.4101 | 0.3605 | 0.7221 | - |
388
+ | 0.1252 | 100 | 0.419 | 0.3919 | 0.7301 | - |
389
+ | 0.1502 | 120 | 0.1517 | 0.2565 | 0.7457 | - |
390
+ | 0.1752 | 140 | 0.2678 | 0.2503 | 0.7484 | - |
391
+ | 0.2003 | 160 | 0.225 | 0.2010 | 0.7546 | - |
392
+ | 0.2253 | 180 | 0.2846 | 0.3203 | 0.7420 | - |
393
+ | 0.2503 | 200 | 0.2086 | 0.1981 | 0.7589 | - |
394
+ | 0.2753 | 220 | 0.1255 | 0.1982 | 0.7610 | - |
395
+ | 0.3004 | 240 | 0.1182 | 0.2328 | 0.7583 | - |
396
+ | 0.3254 | 260 | 0.1328 | 0.2218 | 0.7561 | - |
397
+ | 0.3504 | 280 | 0.1228 | 0.4583 | 0.7343 | - |
398
+ | 0.3755 | 300 | 0.1394 | 0.1785 | 0.7705 | - |
399
+ | 0.4005 | 320 | 0.2577 | 0.1800 | 0.7650 | - |
400
+ | 0.4255 | 340 | 0.1903 | 0.2680 | 0.7557 | - |
401
+ | 0.4506 | 360 | 0.1164 | 0.1761 | 0.7616 | - |
402
+ | 0.4756 | 380 | 0.0779 | 0.3318 | 0.7453 | - |
403
+ | 0.5006 | 400 | 0.1563 | 0.2209 | 0.7582 | - |
404
+ | 0.5257 | 420 | 0.1835 | 0.1683 | 0.7662 | - |
405
+ | 0.5507 | 440 | 0.1171 | 0.1537 | 0.7658 | - |
406
+ | 0.5757 | 460 | 0.0973 | 0.1381 | 0.7710 | - |
407
+ | 0.6008 | 480 | 0.0578 | 0.2303 | 0.7618 | - |
408
+ | 0.6258 | 500 | 0.1343 | 0.1431 | 0.7710 | - |
409
+ | 0.6508 | 520 | 0.1274 | 0.1646 | 0.7695 | - |
410
+ | 0.6758 | 540 | 0.057 | 0.1775 | 0.7606 | - |
411
+ | 0.7009 | 560 | 0.0392 | 0.1425 | 0.7689 | - |
412
+ | 0.7259 | 580 | 0.0434 | 0.1399 | 0.7712 | - |
413
+ | 0.7509 | 600 | 0.1311 | 0.1747 | 0.7670 | - |
414
+ | 0.7760 | 620 | 0.0475 | 0.1375 | 0.7709 | - |
415
+ | 0.8010 | 640 | 0.0183 | 0.1465 | 0.7685 | - |
416
+ | 0.8260 | 660 | 0.024 | 0.1666 | 0.7669 | - |
417
+ | 0.8511 | 680 | 0.0249 | 0.1728 | 0.7656 | - |
418
+ | 0.8761 | 700 | 0.041 | 0.1624 | 0.7711 | - |
419
+ | 0.9011 | 720 | 0.0835 | 0.1397 | 0.7716 | - |
420
+ | 0.9262 | 740 | 0.0404 | 0.1507 | 0.7693 | - |
421
+ | 0.9512 | 760 | 0.0141 | 0.1369 | 0.7723 | - |
422
+ | 0.9762 | 780 | 0.0513 | 0.1555 | 0.7687 | - |
423
+ | 1.0013 | 800 | 0.0387 | 0.1306 | 0.7717 | - |
424
+ | 1.0263 | 820 | 0.0393 | 0.1420 | 0.7707 | - |
425
+ | 1.0513 | 840 | 0.0153 | 0.1656 | 0.7700 | - |
426
+ | 1.0763 | 860 | 0.0263 | 0.1525 | 0.7694 | - |
427
+ | 1.1014 | 880 | 0.0503 | 0.1947 | 0.7638 | - |
428
+ | 1.1264 | 900 | 0.0215 | 0.2202 | 0.7615 | - |
429
+ | 1.1514 | 920 | 0.0217 | 0.1542 | 0.7696 | - |
430
+ | 1.1765 | 940 | 0.007 | 0.1394 | 0.7713 | - |
431
+ | 1.2015 | 960 | 0.018 | 0.1573 | 0.7706 | - |
432
+ | 1.2265 | 980 | 0.0446 | 0.1504 | 0.7686 | - |
433
+ | 1.2516 | 1000 | 0.026 | 0.1573 | 0.7661 | - |
434
+ | 1.2766 | 1020 | 0.0098 | 0.1429 | 0.7683 | - |
435
+ | 1.3016 | 1040 | 0.0196 | 0.1374 | 0.7702 | - |
436
+ | 1.3267 | 1060 | 0.021 | 0.1594 | 0.7685 | - |
437
+ | 1.3517 | 1080 | 0.0499 | 0.1378 | 0.7724 | - |
438
+ | 1.3767 | 1100 | 0.0165 | 0.1335 | 0.7729 | - |
439
+ | 1.4018 | 1120 | 0.0294 | 0.1451 | 0.7713 | - |
440
+ | 1.4268 | 1140 | 0.0114 | 0.1338 | 0.7717 | - |
441
+ | 1.4518 | 1160 | 0.0192 | 0.1327 | 0.7719 | - |
442
+ | 1.4768 | 1180 | 0.0335 | 0.1618 | 0.7646 | - |
443
+ | 1.5019 | 1200 | 0.0546 | 0.1389 | 0.7711 | - |
444
+ | 1.5269 | 1220 | 0.0069 | 0.1239 | 0.7738 | - |
445
+ | 1.5519 | 1240 | 0.0094 | 0.1180 | 0.7739 | - |
446
+ | 1.5770 | 1260 | 0.0074 | 0.1238 | 0.7733 | - |
447
+ | 1.6020 | 1280 | 0.0557 | 0.1428 | 0.7720 | - |
448
+ | 1.6270 | 1300 | 0.056 | 0.1159 | 0.7751 | - |
449
+ | 1.6521 | 1320 | 0.0 | 0.1244 | 0.7758 | - |
450
+ | 1.6771 | 1340 | 0.0066 | 0.1185 | 0.7735 | - |
451
+ | 1.7021 | 1360 | 0.0178 | 0.1016 | 0.7757 | - |
452
+ | 1.7272 | 1380 | 0.0156 | 0.0939 | 0.7776 | - |
453
+ | 1.7522 | 1400 | 0.0 | 0.1138 | 0.7761 | - |
454
+ | 1.7772 | 1420 | 0.0436 | 0.0980 | 0.7775 | - |
455
+ | 1.8023 | 1440 | 0.0626 | 0.1096 | 0.7763 | - |
456
+ | 1.8273 | 1460 | 0.0222 | 0.0968 | 0.7774 | - |
457
+ | 1.8523 | 1480 | 0.0101 | 0.1021 | 0.7762 | - |
458
+ | 1.8773 | 1500 | 0.0171 | 0.1076 | 0.7754 | - |
459
+ | 1.9024 | 1520 | 0.0064 | 0.1279 | 0.7730 | - |
460
+ | 1.9274 | 1540 | 0.0068 | 0.1237 | 0.7729 | - |
461
+ | 1.9524 | 1560 | 0.0066 | 0.1229 | 0.7733 | - |
462
+ | 1.9775 | 1580 | 0.0 | 0.1263 | 0.7731 | - |
463
+ | 2.0025 | 1600 | 0.0065 | 0.1152 | 0.7746 | - |
464
+ | 2.0275 | 1620 | 0.0147 | 0.1021 | 0.7773 | - |
465
+ | 2.0526 | 1640 | 0.0 | 0.1021 | 0.7773 | - |
466
+ | 2.0776 | 1660 | 0.0209 | 0.1017 | 0.7774 | - |
467
+ | 2.1026 | 1680 | 0.0 | 0.0993 | 0.7773 | - |
468
+ | 2.1277 | 1700 | 0.0067 | 0.0922 | 0.7784 | - |
469
+ | 2.1527 | 1720 | 0.0333 | 0.1158 | 0.7749 | - |
470
+ | 2.1777 | 1740 | 0.0 | 0.1397 | 0.7721 | - |
471
+ | 2.2028 | 1760 | 0.0158 | 0.1248 | 0.7751 | - |
472
+ | 2.2278 | 1780 | 0.0201 | 0.1021 | 0.7767 | - |
473
+ | 2.2528 | 1800 | 0.0 | 0.1029 | 0.7768 | - |
474
+ | 2.2778 | 1820 | 0.0107 | 0.1007 | 0.7767 | - |
475
+ | 2.3029 | 1840 | 0.0156 | 0.0923 | 0.7767 | - |
476
+ | 2.3279 | 1860 | 0.0 | 0.1012 | 0.7754 | - |
477
+ | 2.3529 | 1880 | 0.0131 | 0.1184 | 0.7731 | - |
478
+ | 2.3780 | 1900 | 0.0072 | 0.1113 | 0.7752 | - |
479
+ | 2.4030 | 1920 | 0.0337 | 0.0952 | 0.7775 | - |
480
+ | 2.4280 | 1940 | 0.0068 | 0.1086 | 0.7754 | - |
481
+ | 2.4531 | 1960 | 0.0 | 0.1194 | 0.7740 | - |
482
+ | 2.4781 | 1980 | 0.0176 | 0.1184 | 0.7747 | - |
483
+ | 2.5031 | 2000 | 0.0188 | 0.1123 | 0.7745 | - |
484
+ | 2.5282 | 2020 | 0.0 | 0.1138 | 0.7742 | - |
485
+ | 2.5532 | 2040 | 0.0 | 0.1141 | 0.7742 | - |
486
+ | 2.5782 | 2060 | 0.0269 | 0.1126 | 0.7743 | - |
487
+ | 2.6033 | 2080 | 0.0193 | 0.1470 | 0.7707 | - |
488
+ | 2.6283 | 2100 | 0.0074 | 0.1333 | 0.7726 | - |
489
+ | 2.6533 | 2120 | 0.0253 | 0.1004 | 0.7756 | - |
490
+ | 2.6783 | 2140 | 0.0 | 0.0980 | 0.7758 | - |
491
+ | 2.7034 | 2160 | 0.0 | 0.0984 | 0.7758 | - |
492
+ | 2.7284 | 2180 | 0.0 | 0.0984 | 0.7758 | - |
493
+ | 2.7534 | 2200 | 0.0 | 0.0984 | 0.7758 | - |
494
+ | 2.7785 | 2220 | 0.007 | 0.0971 | 0.7766 | - |
495
+ | 2.8035 | 2240 | 0.0 | 0.0998 | 0.7766 | - |
496
+ | 2.8285 | 2260 | 0.015 | 0.0988 | 0.7760 | - |
497
+ | 2.8536 | 2280 | 0.0 | 0.1020 | 0.7757 | - |
498
+ | 2.8786 | 2300 | 0.0 | 0.1023 | 0.7756 | - |
499
+ | 2.9036 | 2320 | 0.0 | 0.1023 | 0.7756 | - |
500
+ | 2.9287 | 2340 | 0.0 | 0.1023 | 0.7756 | - |
501
+ | 2.9537 | 2360 | 0.0075 | 0.1043 | 0.7751 | - |
502
+ | 2.9787 | 2380 | 0.0067 | 0.1125 | 0.7749 | - |
503
+ | 3.0038 | 2400 | 0.0 | 0.1083 | 0.7752 | - |
504
+ | 3.0288 | 2420 | 0.0 | 0.1083 | 0.7752 | - |
505
+ | 3.0538 | 2440 | 0.0 | 0.1083 | 0.7752 | - |
506
+ | 3.0788 | 2460 | 0.0063 | 0.1018 | 0.7755 | - |
507
+ | 3.1039 | 2480 | 0.0 | 0.1012 | 0.7756 | - |
508
+ | **3.1289** | **2500** | **0.0162** | **0.092** | **0.7768** | **-** |
509
+ | 3.1539 | 2520 | 0.01 | 0.0941 | 0.7768 | - |
510
+ | 3.1790 | 2540 | 0.0069 | 0.0946 | 0.7761 | - |
511
+ | 3.2040 | 2560 | 0.0 | 0.0956 | 0.7759 | - |
512
+ | 3.2290 | 2580 | 0.0 | 0.0956 | 0.7758 | - |
513
+ | 3.2541 | 2600 | 0.0 | 0.0956 | 0.7758 | - |
514
+ | 3.2791 | 2620 | 0.0 | 0.0956 | 0.7758 | - |
515
+ | 3.3041 | 2640 | 0.0131 | 0.0981 | 0.7756 | - |
516
+ | 3.3292 | 2660 | 0.0195 | 0.1142 | 0.7748 | - |
517
+ | 3.3542 | 2680 | 0.0 | 0.1172 | 0.7746 | - |
518
+ | 3.3792 | 2700 | 0.0065 | 0.1186 | 0.7748 | - |
519
+ | 3.4043 | 2720 | 0.0169 | 0.1184 | 0.7750 | - |
520
+ | 3.4293 | 2740 | 0.0 | 0.1175 | 0.7749 | - |
521
+ | 3.4543 | 2760 | 0.0 | 0.1165 | 0.7748 | - |
522
+ | 3.4793 | 2780 | 0.0105 | 0.1173 | 0.7747 | - |
523
+ | 3.5044 | 2800 | 0.0066 | 0.1123 | 0.7751 | - |
524
+ | 3.5294 | 2820 | 0.0 | 0.1103 | 0.7753 | - |
525
+ | 3.5544 | 2840 | 0.0 | 0.1106 | 0.7753 | - |
526
+ | 3.5795 | 2860 | 0.0139 | 0.1158 | 0.7745 | - |
527
+ | 3.6045 | 2880 | 0.0 | 0.1183 | 0.7741 | - |
528
+ | 3.6295 | 2900 | 0.0 | 0.1181 | 0.7741 | - |
529
+ | 3.6546 | 2920 | 0.0 | 0.1179 | 0.7741 | - |
530
+ | 3.6796 | 2940 | 0.0 | 0.1179 | 0.7741 | - |
531
+ | 3.7046 | 2960 | 0.0119 | 0.1172 | 0.7742 | - |
532
+ | 3.7297 | 2980 | 0.0068 | 0.1183 | 0.7742 | - |
533
+ | 3.7547 | 3000 | 0.0 | 0.1193 | 0.7741 | - |
534
+ | 3.7797 | 3020 | 0.0 | 0.1193 | 0.7741 | - |
535
+ | 3.8048 | 3040 | 0.0 | 0.1193 | 0.7741 | - |
536
+ | 3.8298 | 3060 | 0.0 | 0.1191 | 0.7741 | - |
537
+ | 3.8548 | 3080 | 0.0 | 0.1193 | 0.7741 | - |
538
+ | 3.8798 | 3100 | 0.0 | 0.1193 | 0.7741 | - |
539
+ | 3.9049 | 3120 | 0.0131 | 0.1165 | 0.7745 | - |
540
+ | 3.9299 | 3140 | 0.0 | 0.1159 | 0.7745 | - |
541
+ | 3.9549 | 3160 | 0.0 | 0.1158 | 0.7746 | - |
542
+ | 3.9800 | 3180 | 0.0 | 0.1153 | 0.7746 | - |
543
+ | -1 | -1 | - | - | - | 0.7768 |
544
+
545
+ * The bold row denotes the saved checkpoint.
546
+ </details>
547
+
548
+ ### Framework Versions
549
+ - Python: 3.10.12
550
+ - Sentence Transformers: 3.4.0
551
+ - Transformers: 4.48.1
552
+ - PyTorch: 2.5.1+cu124
553
+ - Accelerate: 1.3.0
554
+ - Datasets: 3.2.0
555
+ - Tokenizers: 0.21.0
556
+
557
+ ## Citation
558
+
559
+ ### BibTeX
560
+
561
+ #### Sentence Transformers
562
+ ```bibtex
563
+ @inproceedings{reimers-2019-sentence-bert,
564
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
565
+ author = "Reimers, Nils and Gurevych, Iryna",
566
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
567
+ month = "11",
568
+ year = "2019",
569
+ publisher = "Association for Computational Linguistics",
570
+ url = "https://arxiv.org/abs/1908.10084",
571
+ }
572
+ ```
573
+
574
+ <!--
575
+ ## Glossary
576
+
577
+ *Clearly define terms in order to be accessible across audiences.*
578
+ -->
579
+
580
+ <!--
581
+ ## Model Card Authors
582
+
583
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
584
+ -->
585
+
586
+ <!--
587
+ ## Model Card Contact
588
+
589
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
590
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-miniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0",
4
+ "transformers": "4.48.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52ad846c21fd086b25141efbef54b405e3176c73c79b1411858fd6e2c6047bd7
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff