Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +590 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,590 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:25551
|
8 |
+
- loss:OnlineContrastiveLoss
|
9 |
+
base_model: sentence-transformers/paraphrase-MiniLM-L12-v2
|
10 |
+
widget:
|
11 |
+
- source_sentence: Berapa gaji ratarata buruhkaryawan di Indonesia lihat dari umur
|
12 |
+
dan lapangan pekerjaannya 2019
|
13 |
+
sentences:
|
14 |
+
- Rasio laju peningkatan konsumsi tanah dengan laju pertumbuhan penduduk
|
15 |
+
- Rata-rata UpahGaji Bersih sebulan Buruh/Karyawan Pegawai Menurut Kelompok Umur
|
16 |
+
dan lapangan pekerjaan utama, 2019
|
17 |
+
- Ringkasan Neraca Arus Dana, Triwulan Pertama, 2005, (Miliar Rupiah)
|
18 |
+
- source_sentence: Average monthly net wage/salary of employees by age group and type
|
19 |
+
of work (Rupiah), 2018
|
20 |
+
sentences:
|
21 |
+
- Ringkasan Neraca Arus Dana, Triwulan III, 2014**), (Miliar Rupiah)
|
22 |
+
- Nilai Produksi dan Biaya Produksi Rumah Tangga Usaha Peternakan Menurut Jenis
|
23 |
+
Ternak, 2014
|
24 |
+
- Rekapitulasi Laporan Posisi Keuangan Perusahaan Penyelenggara Program Asuransi
|
25 |
+
Wajib dan BPJS Per 31 Desember (miliar rupiah) 2000-2021
|
26 |
+
- source_sentence: jumlah pembangunan fasilitas sekolah baru
|
27 |
+
sentences:
|
28 |
+
- Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Pendidikan Tertinggi
|
29 |
+
yang Ditamatkan dan Lapangan Pekerjaan Utama di 9 Sektor (rupiah), 2017
|
30 |
+
- Posisi Kredit Perbankan1dalam Rupiah dan Valuta Asing Menurut Sektor Ekonomi (miliar
|
31 |
+
rupiah), 2016-2018
|
32 |
+
- Angka Kematian Bayi/AKB (Infant Mortality Rate/IMR) Hasil Long Form SP2020 Menurut
|
33 |
+
Provinsi/Kabupaten/Kota, 2020
|
34 |
+
- source_sentence: Data Pendapatan Rata-rata Orang Yang Berusaha Sendiri Per Provinsi,
|
35 |
+
Berdasarkan Lapangan Pekerjaan Utama (2020)
|
36 |
+
sentences:
|
37 |
+
- Nilai Pendapatan Disposabel Menurut Golongan Rumah Tangga (miliar rupiah), 2000,
|
38 |
+
2005, dan 2008
|
39 |
+
- IHK dan Rata-rata Upah per Bulan Buruh Pertambangan di Bawah Mandor (Supervisor),
|
40 |
+
1996-2014 (1996=100)
|
41 |
+
- Ringkasan Neraca Arus Dana Tahun 2004 (Miliar Rupiah)
|
42 |
+
- source_sentence: Bagaimana perkembangan koperasi di Indonesia, khususnya sekitar
|
43 |
+
tayun 2000?
|
44 |
+
sentences:
|
45 |
+
- Rata-Rata Harian Aliran Sungai, Tinggi Aliran, dan Volume Air di Beberapa Sungai
|
46 |
+
yang Daerah Pengalirannya Lebih dari 1.000 km2, 2000-2011
|
47 |
+
- Penduduk Berumur 15 Tahun Ke Atas yang Bekerja Selama Seminggu yang Lalu Menurut
|
48 |
+
Golongan Umur dan Jumlah Jam Kerja Seluruhnya, 2008 - 2024
|
49 |
+
- IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor),
|
50 |
+
1996-2014 (1996=100)
|
51 |
+
datasets:
|
52 |
+
- yahyaabd/query-hard-pos-neg-doc-pairs-statictable
|
53 |
+
pipeline_tag: sentence-similarity
|
54 |
+
library_name: sentence-transformers
|
55 |
+
metrics:
|
56 |
+
- pearson_cosine
|
57 |
+
- spearman_cosine
|
58 |
+
model-index:
|
59 |
+
- name: SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L12-v2
|
60 |
+
results:
|
61 |
+
- task:
|
62 |
+
type: semantic-similarity
|
63 |
+
name: Semantic Similarity
|
64 |
+
dataset:
|
65 |
+
name: allstats semantic mini v1 eval
|
66 |
+
type: allstats-semantic-mini-v1-eval
|
67 |
+
metrics:
|
68 |
+
- type: pearson_cosine
|
69 |
+
value: 0.8479971660039509
|
70 |
+
name: Pearson Cosine
|
71 |
+
- type: spearman_cosine
|
72 |
+
value: 0.7745638757528484
|
73 |
+
name: Spearman Cosine
|
74 |
+
- task:
|
75 |
+
type: semantic-similarity
|
76 |
+
name: Semantic Similarity
|
77 |
+
dataset:
|
78 |
+
name: allstat search mini v1 test
|
79 |
+
type: allstat-search-mini-v1-test
|
80 |
+
metrics:
|
81 |
+
- type: pearson_cosine
|
82 |
+
value: 0.8538445733470035
|
83 |
+
name: Pearson Cosine
|
84 |
+
- type: spearman_cosine
|
85 |
+
value: 0.7767623851780713
|
86 |
+
name: Spearman Cosine
|
87 |
+
---
|
88 |
+
|
89 |
+
# SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L12-v2
|
90 |
+
|
91 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L12-v2) on the [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
92 |
+
|
93 |
+
## Model Details
|
94 |
+
|
95 |
+
### Model Description
|
96 |
+
- **Model Type:** Sentence Transformer
|
97 |
+
- **Base model:** [sentence-transformers/paraphrase-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L12-v2) <!-- at revision 3f21b01a41e265ecb43cef6afeef20b7e578b637 -->
|
98 |
+
- **Maximum Sequence Length:** 256 tokens
|
99 |
+
- **Output Dimensionality:** 384 dimensions
|
100 |
+
- **Similarity Function:** Cosine Similarity
|
101 |
+
- **Training Dataset:**
|
102 |
+
- [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable)
|
103 |
+
<!-- - **Language:** Unknown -->
|
104 |
+
<!-- - **License:** Unknown -->
|
105 |
+
|
106 |
+
### Model Sources
|
107 |
+
|
108 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
109 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
110 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
111 |
+
|
112 |
+
### Full Model Architecture
|
113 |
+
|
114 |
+
```
|
115 |
+
SentenceTransformer(
|
116 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
117 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
118 |
+
)
|
119 |
+
```
|
120 |
+
|
121 |
+
## Usage
|
122 |
+
|
123 |
+
### Direct Usage (Sentence Transformers)
|
124 |
+
|
125 |
+
First install the Sentence Transformers library:
|
126 |
+
|
127 |
+
```bash
|
128 |
+
pip install -U sentence-transformers
|
129 |
+
```
|
130 |
+
|
131 |
+
Then you can load this model and run inference.
|
132 |
+
```python
|
133 |
+
from sentence_transformers import SentenceTransformer
|
134 |
+
|
135 |
+
# Download from the 🤗 Hub
|
136 |
+
model = SentenceTransformer("yahyaabd/allstats-search-miniLM-v1")
|
137 |
+
# Run inference
|
138 |
+
sentences = [
|
139 |
+
'Bagaimana perkembangan koperasi di Indonesia, khususnya sekitar tayun 2000?',
|
140 |
+
'IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor), 1996-2014 (1996=100)',
|
141 |
+
'Rata-Rata Harian Aliran Sungai, Tinggi Aliran, dan Volume Air di Beberapa Sungai yang Daerah Pengalirannya Lebih dari 1.000 km2, 2000-2011',
|
142 |
+
]
|
143 |
+
embeddings = model.encode(sentences)
|
144 |
+
print(embeddings.shape)
|
145 |
+
# [3, 384]
|
146 |
+
|
147 |
+
# Get the similarity scores for the embeddings
|
148 |
+
similarities = model.similarity(embeddings, embeddings)
|
149 |
+
print(similarities.shape)
|
150 |
+
# [3, 3]
|
151 |
+
```
|
152 |
+
|
153 |
+
<!--
|
154 |
+
### Direct Usage (Transformers)
|
155 |
+
|
156 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
157 |
+
|
158 |
+
</details>
|
159 |
+
-->
|
160 |
+
|
161 |
+
<!--
|
162 |
+
### Downstream Usage (Sentence Transformers)
|
163 |
+
|
164 |
+
You can finetune this model on your own dataset.
|
165 |
+
|
166 |
+
<details><summary>Click to expand</summary>
|
167 |
+
|
168 |
+
</details>
|
169 |
+
-->
|
170 |
+
|
171 |
+
<!--
|
172 |
+
### Out-of-Scope Use
|
173 |
+
|
174 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
175 |
+
-->
|
176 |
+
|
177 |
+
## Evaluation
|
178 |
+
|
179 |
+
### Metrics
|
180 |
+
|
181 |
+
#### Semantic Similarity
|
182 |
+
|
183 |
+
* Datasets: `allstats-semantic-mini-v1-eval` and `allstat-search-mini-v1-test`
|
184 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
185 |
+
|
186 |
+
| Metric | allstats-semantic-mini-v1-eval | allstat-search-mini-v1-test |
|
187 |
+
|:--------------------|:-------------------------------|:----------------------------|
|
188 |
+
| pearson_cosine | 0.848 | 0.8538 |
|
189 |
+
| **spearman_cosine** | **0.7746** | **0.7768** |
|
190 |
+
|
191 |
+
<!--
|
192 |
+
## Bias, Risks and Limitations
|
193 |
+
|
194 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
195 |
+
-->
|
196 |
+
|
197 |
+
<!--
|
198 |
+
### Recommendations
|
199 |
+
|
200 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
201 |
+
-->
|
202 |
+
|
203 |
+
## Training Details
|
204 |
+
|
205 |
+
### Training Dataset
|
206 |
+
|
207 |
+
#### query-hard-pos-neg-doc-pairs-statictable
|
208 |
+
|
209 |
+
* Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [25756d3](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/25756d36046bf92b56bce1b450fd080853688667)
|
210 |
+
* Size: 25,551 training samples
|
211 |
+
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
|
212 |
+
* Approximate statistics based on the first 1000 samples:
|
213 |
+
| | query | doc | label |
|
214 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
|
215 |
+
| type | string | string | int |
|
216 |
+
| details | <ul><li>min: 9 tokens</li><li>mean: 28.64 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 36.67 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>0: ~65.80%</li><li>1: ~34.20%</li></ul> |
|
217 |
+
* Samples:
|
218 |
+
| query | doc | label |
|
219 |
+
|:-----------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------|:---------------|
|
220 |
+
| <code>Gaji nominal, indeks upah: nominal & riil pekerja manufaktur non-mandor (2012=100), 2013-2014</code> | <code>Ringkasan Neraca Arus Dana, Triwulan I, 2007, (Miliar Rupiah)</code> | <code>0</code> |
|
221 |
+
| <code>gaji nominal, indeks upah: nominal & riil pekerja manufaktur non-mandor (2012=100), 2013-2014</code> | <code>Ringkasan Neraca Arus Dana, Triwulan I, 2007, (Miliar Rupiah)</code> | <code>0</code> |
|
222 |
+
| <code>GAJI NOMINAL, INDEKS UPAH: NOMINAL & RIIL PEKERJA MANUFAKTUR NON-MANDOR (2012=100), 2013-2014</code> | <code>Ringkasan Neraca Arus Dana, Triwulan I, 2007, (Miliar Rupiah)</code> | <code>0</code> |
|
223 |
+
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
|
224 |
+
|
225 |
+
### Evaluation Dataset
|
226 |
+
|
227 |
+
#### query-hard-pos-neg-doc-pairs-statictable
|
228 |
+
|
229 |
+
* Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [25756d3](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/25756d36046bf92b56bce1b450fd080853688667)
|
230 |
+
* Size: 5,463 evaluation samples
|
231 |
+
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
|
232 |
+
* Approximate statistics based on the first 1000 samples:
|
233 |
+
| | query | doc | label |
|
234 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
|
235 |
+
| type | string | string | int |
|
236 |
+
| details | <ul><li>min: 10 tokens</li><li>mean: 29.3 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 37.1 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>0: ~73.20%</li><li>1: ~26.80%</li></ul> |
|
237 |
+
* Samples:
|
238 |
+
| query | doc | label |
|
239 |
+
|:------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------|:---------------|
|
240 |
+
| <code>Bagaimana penghasilan wirausahawan di Indonesia bervariasi per provinsi dan jenis pekerjaan utama di tahun 2016?</code> | <code>Realisasi Penerimaan dan Pengeluaran Pemerintah Desa (Juta Rupiah) di Perkotaan menurut Provinsi, 2000-2012</code> | <code>0</code> |
|
241 |
+
| <code>bagaimana penghasilan wirausahawan di indonesia bervariasi per provinsi dan jenis pekerjaan utama di tahun 2016?</code> | <code>Realisasi Penerimaan dan Pengeluaran Pemerintah Desa (Juta Rupiah) di Perkotaan menurut Provinsi, 2000-2012</code> | <code>0</code> |
|
242 |
+
| <code>BAGAIMANA PENGHASILAN WIRAUSAHAWAN DI INDONESIA BERVARIASI PER PROVINSI DAN JENIS PEKERJAAN UTAMA DI TAHUN 2016?</code> | <code>Realisasi Penerimaan dan Pengeluaran Pemerintah Desa (Juta Rupiah) di Perkotaan menurut Provinsi, 2000-2012</code> | <code>0</code> |
|
243 |
+
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
|
244 |
+
|
245 |
+
### Training Hyperparameters
|
246 |
+
#### Non-Default Hyperparameters
|
247 |
+
|
248 |
+
- `eval_strategy`: steps
|
249 |
+
- `per_device_train_batch_size`: 32
|
250 |
+
- `per_device_eval_batch_size`: 32
|
251 |
+
- `num_train_epochs`: 4
|
252 |
+
- `warmup_ratio`: 0.1
|
253 |
+
- `fp16`: True
|
254 |
+
- `load_best_model_at_end`: True
|
255 |
+
- `eval_on_start`: True
|
256 |
+
|
257 |
+
#### All Hyperparameters
|
258 |
+
<details><summary>Click to expand</summary>
|
259 |
+
|
260 |
+
- `overwrite_output_dir`: False
|
261 |
+
- `do_predict`: False
|
262 |
+
- `eval_strategy`: steps
|
263 |
+
- `prediction_loss_only`: True
|
264 |
+
- `per_device_train_batch_size`: 32
|
265 |
+
- `per_device_eval_batch_size`: 32
|
266 |
+
- `per_gpu_train_batch_size`: None
|
267 |
+
- `per_gpu_eval_batch_size`: None
|
268 |
+
- `gradient_accumulation_steps`: 1
|
269 |
+
- `eval_accumulation_steps`: None
|
270 |
+
- `torch_empty_cache_steps`: None
|
271 |
+
- `learning_rate`: 5e-05
|
272 |
+
- `weight_decay`: 0.0
|
273 |
+
- `adam_beta1`: 0.9
|
274 |
+
- `adam_beta2`: 0.999
|
275 |
+
- `adam_epsilon`: 1e-08
|
276 |
+
- `max_grad_norm`: 1.0
|
277 |
+
- `num_train_epochs`: 4
|
278 |
+
- `max_steps`: -1
|
279 |
+
- `lr_scheduler_type`: linear
|
280 |
+
- `lr_scheduler_kwargs`: {}
|
281 |
+
- `warmup_ratio`: 0.1
|
282 |
+
- `warmup_steps`: 0
|
283 |
+
- `log_level`: passive
|
284 |
+
- `log_level_replica`: warning
|
285 |
+
- `log_on_each_node`: True
|
286 |
+
- `logging_nan_inf_filter`: True
|
287 |
+
- `save_safetensors`: True
|
288 |
+
- `save_on_each_node`: False
|
289 |
+
- `save_only_model`: False
|
290 |
+
- `restore_callback_states_from_checkpoint`: False
|
291 |
+
- `no_cuda`: False
|
292 |
+
- `use_cpu`: False
|
293 |
+
- `use_mps_device`: False
|
294 |
+
- `seed`: 42
|
295 |
+
- `data_seed`: None
|
296 |
+
- `jit_mode_eval`: False
|
297 |
+
- `use_ipex`: False
|
298 |
+
- `bf16`: False
|
299 |
+
- `fp16`: True
|
300 |
+
- `fp16_opt_level`: O1
|
301 |
+
- `half_precision_backend`: auto
|
302 |
+
- `bf16_full_eval`: False
|
303 |
+
- `fp16_full_eval`: False
|
304 |
+
- `tf32`: None
|
305 |
+
- `local_rank`: 0
|
306 |
+
- `ddp_backend`: None
|
307 |
+
- `tpu_num_cores`: None
|
308 |
+
- `tpu_metrics_debug`: False
|
309 |
+
- `debug`: []
|
310 |
+
- `dataloader_drop_last`: False
|
311 |
+
- `dataloader_num_workers`: 0
|
312 |
+
- `dataloader_prefetch_factor`: None
|
313 |
+
- `past_index`: -1
|
314 |
+
- `disable_tqdm`: False
|
315 |
+
- `remove_unused_columns`: True
|
316 |
+
- `label_names`: None
|
317 |
+
- `load_best_model_at_end`: True
|
318 |
+
- `ignore_data_skip`: False
|
319 |
+
- `fsdp`: []
|
320 |
+
- `fsdp_min_num_params`: 0
|
321 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
322 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
323 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
324 |
+
- `deepspeed`: None
|
325 |
+
- `label_smoothing_factor`: 0.0
|
326 |
+
- `optim`: adamw_torch
|
327 |
+
- `optim_args`: None
|
328 |
+
- `adafactor`: False
|
329 |
+
- `group_by_length`: False
|
330 |
+
- `length_column_name`: length
|
331 |
+
- `ddp_find_unused_parameters`: None
|
332 |
+
- `ddp_bucket_cap_mb`: None
|
333 |
+
- `ddp_broadcast_buffers`: False
|
334 |
+
- `dataloader_pin_memory`: True
|
335 |
+
- `dataloader_persistent_workers`: False
|
336 |
+
- `skip_memory_metrics`: True
|
337 |
+
- `use_legacy_prediction_loop`: False
|
338 |
+
- `push_to_hub`: False
|
339 |
+
- `resume_from_checkpoint`: None
|
340 |
+
- `hub_model_id`: None
|
341 |
+
- `hub_strategy`: every_save
|
342 |
+
- `hub_private_repo`: None
|
343 |
+
- `hub_always_push`: False
|
344 |
+
- `gradient_checkpointing`: False
|
345 |
+
- `gradient_checkpointing_kwargs`: None
|
346 |
+
- `include_inputs_for_metrics`: False
|
347 |
+
- `include_for_metrics`: []
|
348 |
+
- `eval_do_concat_batches`: True
|
349 |
+
- `fp16_backend`: auto
|
350 |
+
- `push_to_hub_model_id`: None
|
351 |
+
- `push_to_hub_organization`: None
|
352 |
+
- `mp_parameters`:
|
353 |
+
- `auto_find_batch_size`: False
|
354 |
+
- `full_determinism`: False
|
355 |
+
- `torchdynamo`: None
|
356 |
+
- `ray_scope`: last
|
357 |
+
- `ddp_timeout`: 1800
|
358 |
+
- `torch_compile`: False
|
359 |
+
- `torch_compile_backend`: None
|
360 |
+
- `torch_compile_mode`: None
|
361 |
+
- `dispatch_batches`: None
|
362 |
+
- `split_batches`: None
|
363 |
+
- `include_tokens_per_second`: False
|
364 |
+
- `include_num_input_tokens_seen`: False
|
365 |
+
- `neftune_noise_alpha`: None
|
366 |
+
- `optim_target_modules`: None
|
367 |
+
- `batch_eval_metrics`: False
|
368 |
+
- `eval_on_start`: True
|
369 |
+
- `use_liger_kernel`: False
|
370 |
+
- `eval_use_gather_object`: False
|
371 |
+
- `average_tokens_across_devices`: False
|
372 |
+
- `prompts`: None
|
373 |
+
- `batch_sampler`: batch_sampler
|
374 |
+
- `multi_dataset_batch_sampler`: proportional
|
375 |
+
|
376 |
+
</details>
|
377 |
+
|
378 |
+
### Training Logs
|
379 |
+
<details><summary>Click to expand</summary>
|
380 |
+
|
381 |
+
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-mini-v1-eval_spearman_cosine | allstat-search-mini-v1-test_spearman_cosine |
|
382 |
+
|:----------:|:--------:|:-------------:|:---------------:|:----------------------------------------------:|:-------------------------------------------:|
|
383 |
+
| 0 | 0 | - | 1.0797 | 0.5314 | - |
|
384 |
+
| 0.0250 | 20 | 1.2823 | 0.9331 | 0.5510 | - |
|
385 |
+
| 0.0501 | 40 | 0.9562 | 0.6159 | 0.6492 | - |
|
386 |
+
| 0.0751 | 60 | 0.5872 | 0.4629 | 0.6913 | - |
|
387 |
+
| 0.1001 | 80 | 0.4101 | 0.3605 | 0.7221 | - |
|
388 |
+
| 0.1252 | 100 | 0.419 | 0.3919 | 0.7301 | - |
|
389 |
+
| 0.1502 | 120 | 0.1517 | 0.2565 | 0.7457 | - |
|
390 |
+
| 0.1752 | 140 | 0.2678 | 0.2503 | 0.7484 | - |
|
391 |
+
| 0.2003 | 160 | 0.225 | 0.2010 | 0.7546 | - |
|
392 |
+
| 0.2253 | 180 | 0.2846 | 0.3203 | 0.7420 | - |
|
393 |
+
| 0.2503 | 200 | 0.2086 | 0.1981 | 0.7589 | - |
|
394 |
+
| 0.2753 | 220 | 0.1255 | 0.1982 | 0.7610 | - |
|
395 |
+
| 0.3004 | 240 | 0.1182 | 0.2328 | 0.7583 | - |
|
396 |
+
| 0.3254 | 260 | 0.1328 | 0.2218 | 0.7561 | - |
|
397 |
+
| 0.3504 | 280 | 0.1228 | 0.4583 | 0.7343 | - |
|
398 |
+
| 0.3755 | 300 | 0.1394 | 0.1785 | 0.7705 | - |
|
399 |
+
| 0.4005 | 320 | 0.2577 | 0.1800 | 0.7650 | - |
|
400 |
+
| 0.4255 | 340 | 0.1903 | 0.2680 | 0.7557 | - |
|
401 |
+
| 0.4506 | 360 | 0.1164 | 0.1761 | 0.7616 | - |
|
402 |
+
| 0.4756 | 380 | 0.0779 | 0.3318 | 0.7453 | - |
|
403 |
+
| 0.5006 | 400 | 0.1563 | 0.2209 | 0.7582 | - |
|
404 |
+
| 0.5257 | 420 | 0.1835 | 0.1683 | 0.7662 | - |
|
405 |
+
| 0.5507 | 440 | 0.1171 | 0.1537 | 0.7658 | - |
|
406 |
+
| 0.5757 | 460 | 0.0973 | 0.1381 | 0.7710 | - |
|
407 |
+
| 0.6008 | 480 | 0.0578 | 0.2303 | 0.7618 | - |
|
408 |
+
| 0.6258 | 500 | 0.1343 | 0.1431 | 0.7710 | - |
|
409 |
+
| 0.6508 | 520 | 0.1274 | 0.1646 | 0.7695 | - |
|
410 |
+
| 0.6758 | 540 | 0.057 | 0.1775 | 0.7606 | - |
|
411 |
+
| 0.7009 | 560 | 0.0392 | 0.1425 | 0.7689 | - |
|
412 |
+
| 0.7259 | 580 | 0.0434 | 0.1399 | 0.7712 | - |
|
413 |
+
| 0.7509 | 600 | 0.1311 | 0.1747 | 0.7670 | - |
|
414 |
+
| 0.7760 | 620 | 0.0475 | 0.1375 | 0.7709 | - |
|
415 |
+
| 0.8010 | 640 | 0.0183 | 0.1465 | 0.7685 | - |
|
416 |
+
| 0.8260 | 660 | 0.024 | 0.1666 | 0.7669 | - |
|
417 |
+
| 0.8511 | 680 | 0.0249 | 0.1728 | 0.7656 | - |
|
418 |
+
| 0.8761 | 700 | 0.041 | 0.1624 | 0.7711 | - |
|
419 |
+
| 0.9011 | 720 | 0.0835 | 0.1397 | 0.7716 | - |
|
420 |
+
| 0.9262 | 740 | 0.0404 | 0.1507 | 0.7693 | - |
|
421 |
+
| 0.9512 | 760 | 0.0141 | 0.1369 | 0.7723 | - |
|
422 |
+
| 0.9762 | 780 | 0.0513 | 0.1555 | 0.7687 | - |
|
423 |
+
| 1.0013 | 800 | 0.0387 | 0.1306 | 0.7717 | - |
|
424 |
+
| 1.0263 | 820 | 0.0393 | 0.1420 | 0.7707 | - |
|
425 |
+
| 1.0513 | 840 | 0.0153 | 0.1656 | 0.7700 | - |
|
426 |
+
| 1.0763 | 860 | 0.0263 | 0.1525 | 0.7694 | - |
|
427 |
+
| 1.1014 | 880 | 0.0503 | 0.1947 | 0.7638 | - |
|
428 |
+
| 1.1264 | 900 | 0.0215 | 0.2202 | 0.7615 | - |
|
429 |
+
| 1.1514 | 920 | 0.0217 | 0.1542 | 0.7696 | - |
|
430 |
+
| 1.1765 | 940 | 0.007 | 0.1394 | 0.7713 | - |
|
431 |
+
| 1.2015 | 960 | 0.018 | 0.1573 | 0.7706 | - |
|
432 |
+
| 1.2265 | 980 | 0.0446 | 0.1504 | 0.7686 | - |
|
433 |
+
| 1.2516 | 1000 | 0.026 | 0.1573 | 0.7661 | - |
|
434 |
+
| 1.2766 | 1020 | 0.0098 | 0.1429 | 0.7683 | - |
|
435 |
+
| 1.3016 | 1040 | 0.0196 | 0.1374 | 0.7702 | - |
|
436 |
+
| 1.3267 | 1060 | 0.021 | 0.1594 | 0.7685 | - |
|
437 |
+
| 1.3517 | 1080 | 0.0499 | 0.1378 | 0.7724 | - |
|
438 |
+
| 1.3767 | 1100 | 0.0165 | 0.1335 | 0.7729 | - |
|
439 |
+
| 1.4018 | 1120 | 0.0294 | 0.1451 | 0.7713 | - |
|
440 |
+
| 1.4268 | 1140 | 0.0114 | 0.1338 | 0.7717 | - |
|
441 |
+
| 1.4518 | 1160 | 0.0192 | 0.1327 | 0.7719 | - |
|
442 |
+
| 1.4768 | 1180 | 0.0335 | 0.1618 | 0.7646 | - |
|
443 |
+
| 1.5019 | 1200 | 0.0546 | 0.1389 | 0.7711 | - |
|
444 |
+
| 1.5269 | 1220 | 0.0069 | 0.1239 | 0.7738 | - |
|
445 |
+
| 1.5519 | 1240 | 0.0094 | 0.1180 | 0.7739 | - |
|
446 |
+
| 1.5770 | 1260 | 0.0074 | 0.1238 | 0.7733 | - |
|
447 |
+
| 1.6020 | 1280 | 0.0557 | 0.1428 | 0.7720 | - |
|
448 |
+
| 1.6270 | 1300 | 0.056 | 0.1159 | 0.7751 | - |
|
449 |
+
| 1.6521 | 1320 | 0.0 | 0.1244 | 0.7758 | - |
|
450 |
+
| 1.6771 | 1340 | 0.0066 | 0.1185 | 0.7735 | - |
|
451 |
+
| 1.7021 | 1360 | 0.0178 | 0.1016 | 0.7757 | - |
|
452 |
+
| 1.7272 | 1380 | 0.0156 | 0.0939 | 0.7776 | - |
|
453 |
+
| 1.7522 | 1400 | 0.0 | 0.1138 | 0.7761 | - |
|
454 |
+
| 1.7772 | 1420 | 0.0436 | 0.0980 | 0.7775 | - |
|
455 |
+
| 1.8023 | 1440 | 0.0626 | 0.1096 | 0.7763 | - |
|
456 |
+
| 1.8273 | 1460 | 0.0222 | 0.0968 | 0.7774 | - |
|
457 |
+
| 1.8523 | 1480 | 0.0101 | 0.1021 | 0.7762 | - |
|
458 |
+
| 1.8773 | 1500 | 0.0171 | 0.1076 | 0.7754 | - |
|
459 |
+
| 1.9024 | 1520 | 0.0064 | 0.1279 | 0.7730 | - |
|
460 |
+
| 1.9274 | 1540 | 0.0068 | 0.1237 | 0.7729 | - |
|
461 |
+
| 1.9524 | 1560 | 0.0066 | 0.1229 | 0.7733 | - |
|
462 |
+
| 1.9775 | 1580 | 0.0 | 0.1263 | 0.7731 | - |
|
463 |
+
| 2.0025 | 1600 | 0.0065 | 0.1152 | 0.7746 | - |
|
464 |
+
| 2.0275 | 1620 | 0.0147 | 0.1021 | 0.7773 | - |
|
465 |
+
| 2.0526 | 1640 | 0.0 | 0.1021 | 0.7773 | - |
|
466 |
+
| 2.0776 | 1660 | 0.0209 | 0.1017 | 0.7774 | - |
|
467 |
+
| 2.1026 | 1680 | 0.0 | 0.0993 | 0.7773 | - |
|
468 |
+
| 2.1277 | 1700 | 0.0067 | 0.0922 | 0.7784 | - |
|
469 |
+
| 2.1527 | 1720 | 0.0333 | 0.1158 | 0.7749 | - |
|
470 |
+
| 2.1777 | 1740 | 0.0 | 0.1397 | 0.7721 | - |
|
471 |
+
| 2.2028 | 1760 | 0.0158 | 0.1248 | 0.7751 | - |
|
472 |
+
| 2.2278 | 1780 | 0.0201 | 0.1021 | 0.7767 | - |
|
473 |
+
| 2.2528 | 1800 | 0.0 | 0.1029 | 0.7768 | - |
|
474 |
+
| 2.2778 | 1820 | 0.0107 | 0.1007 | 0.7767 | - |
|
475 |
+
| 2.3029 | 1840 | 0.0156 | 0.0923 | 0.7767 | - |
|
476 |
+
| 2.3279 | 1860 | 0.0 | 0.1012 | 0.7754 | - |
|
477 |
+
| 2.3529 | 1880 | 0.0131 | 0.1184 | 0.7731 | - |
|
478 |
+
| 2.3780 | 1900 | 0.0072 | 0.1113 | 0.7752 | - |
|
479 |
+
| 2.4030 | 1920 | 0.0337 | 0.0952 | 0.7775 | - |
|
480 |
+
| 2.4280 | 1940 | 0.0068 | 0.1086 | 0.7754 | - |
|
481 |
+
| 2.4531 | 1960 | 0.0 | 0.1194 | 0.7740 | - |
|
482 |
+
| 2.4781 | 1980 | 0.0176 | 0.1184 | 0.7747 | - |
|
483 |
+
| 2.5031 | 2000 | 0.0188 | 0.1123 | 0.7745 | - |
|
484 |
+
| 2.5282 | 2020 | 0.0 | 0.1138 | 0.7742 | - |
|
485 |
+
| 2.5532 | 2040 | 0.0 | 0.1141 | 0.7742 | - |
|
486 |
+
| 2.5782 | 2060 | 0.0269 | 0.1126 | 0.7743 | - |
|
487 |
+
| 2.6033 | 2080 | 0.0193 | 0.1470 | 0.7707 | - |
|
488 |
+
| 2.6283 | 2100 | 0.0074 | 0.1333 | 0.7726 | - |
|
489 |
+
| 2.6533 | 2120 | 0.0253 | 0.1004 | 0.7756 | - |
|
490 |
+
| 2.6783 | 2140 | 0.0 | 0.0980 | 0.7758 | - |
|
491 |
+
| 2.7034 | 2160 | 0.0 | 0.0984 | 0.7758 | - |
|
492 |
+
| 2.7284 | 2180 | 0.0 | 0.0984 | 0.7758 | - |
|
493 |
+
| 2.7534 | 2200 | 0.0 | 0.0984 | 0.7758 | - |
|
494 |
+
| 2.7785 | 2220 | 0.007 | 0.0971 | 0.7766 | - |
|
495 |
+
| 2.8035 | 2240 | 0.0 | 0.0998 | 0.7766 | - |
|
496 |
+
| 2.8285 | 2260 | 0.015 | 0.0988 | 0.7760 | - |
|
497 |
+
| 2.8536 | 2280 | 0.0 | 0.1020 | 0.7757 | - |
|
498 |
+
| 2.8786 | 2300 | 0.0 | 0.1023 | 0.7756 | - |
|
499 |
+
| 2.9036 | 2320 | 0.0 | 0.1023 | 0.7756 | - |
|
500 |
+
| 2.9287 | 2340 | 0.0 | 0.1023 | 0.7756 | - |
|
501 |
+
| 2.9537 | 2360 | 0.0075 | 0.1043 | 0.7751 | - |
|
502 |
+
| 2.9787 | 2380 | 0.0067 | 0.1125 | 0.7749 | - |
|
503 |
+
| 3.0038 | 2400 | 0.0 | 0.1083 | 0.7752 | - |
|
504 |
+
| 3.0288 | 2420 | 0.0 | 0.1083 | 0.7752 | - |
|
505 |
+
| 3.0538 | 2440 | 0.0 | 0.1083 | 0.7752 | - |
|
506 |
+
| 3.0788 | 2460 | 0.0063 | 0.1018 | 0.7755 | - |
|
507 |
+
| 3.1039 | 2480 | 0.0 | 0.1012 | 0.7756 | - |
|
508 |
+
| **3.1289** | **2500** | **0.0162** | **0.092** | **0.7768** | **-** |
|
509 |
+
| 3.1539 | 2520 | 0.01 | 0.0941 | 0.7768 | - |
|
510 |
+
| 3.1790 | 2540 | 0.0069 | 0.0946 | 0.7761 | - |
|
511 |
+
| 3.2040 | 2560 | 0.0 | 0.0956 | 0.7759 | - |
|
512 |
+
| 3.2290 | 2580 | 0.0 | 0.0956 | 0.7758 | - |
|
513 |
+
| 3.2541 | 2600 | 0.0 | 0.0956 | 0.7758 | - |
|
514 |
+
| 3.2791 | 2620 | 0.0 | 0.0956 | 0.7758 | - |
|
515 |
+
| 3.3041 | 2640 | 0.0131 | 0.0981 | 0.7756 | - |
|
516 |
+
| 3.3292 | 2660 | 0.0195 | 0.1142 | 0.7748 | - |
|
517 |
+
| 3.3542 | 2680 | 0.0 | 0.1172 | 0.7746 | - |
|
518 |
+
| 3.3792 | 2700 | 0.0065 | 0.1186 | 0.7748 | - |
|
519 |
+
| 3.4043 | 2720 | 0.0169 | 0.1184 | 0.7750 | - |
|
520 |
+
| 3.4293 | 2740 | 0.0 | 0.1175 | 0.7749 | - |
|
521 |
+
| 3.4543 | 2760 | 0.0 | 0.1165 | 0.7748 | - |
|
522 |
+
| 3.4793 | 2780 | 0.0105 | 0.1173 | 0.7747 | - |
|
523 |
+
| 3.5044 | 2800 | 0.0066 | 0.1123 | 0.7751 | - |
|
524 |
+
| 3.5294 | 2820 | 0.0 | 0.1103 | 0.7753 | - |
|
525 |
+
| 3.5544 | 2840 | 0.0 | 0.1106 | 0.7753 | - |
|
526 |
+
| 3.5795 | 2860 | 0.0139 | 0.1158 | 0.7745 | - |
|
527 |
+
| 3.6045 | 2880 | 0.0 | 0.1183 | 0.7741 | - |
|
528 |
+
| 3.6295 | 2900 | 0.0 | 0.1181 | 0.7741 | - |
|
529 |
+
| 3.6546 | 2920 | 0.0 | 0.1179 | 0.7741 | - |
|
530 |
+
| 3.6796 | 2940 | 0.0 | 0.1179 | 0.7741 | - |
|
531 |
+
| 3.7046 | 2960 | 0.0119 | 0.1172 | 0.7742 | - |
|
532 |
+
| 3.7297 | 2980 | 0.0068 | 0.1183 | 0.7742 | - |
|
533 |
+
| 3.7547 | 3000 | 0.0 | 0.1193 | 0.7741 | - |
|
534 |
+
| 3.7797 | 3020 | 0.0 | 0.1193 | 0.7741 | - |
|
535 |
+
| 3.8048 | 3040 | 0.0 | 0.1193 | 0.7741 | - |
|
536 |
+
| 3.8298 | 3060 | 0.0 | 0.1191 | 0.7741 | - |
|
537 |
+
| 3.8548 | 3080 | 0.0 | 0.1193 | 0.7741 | - |
|
538 |
+
| 3.8798 | 3100 | 0.0 | 0.1193 | 0.7741 | - |
|
539 |
+
| 3.9049 | 3120 | 0.0131 | 0.1165 | 0.7745 | - |
|
540 |
+
| 3.9299 | 3140 | 0.0 | 0.1159 | 0.7745 | - |
|
541 |
+
| 3.9549 | 3160 | 0.0 | 0.1158 | 0.7746 | - |
|
542 |
+
| 3.9800 | 3180 | 0.0 | 0.1153 | 0.7746 | - |
|
543 |
+
| -1 | -1 | - | - | - | 0.7768 |
|
544 |
+
|
545 |
+
* The bold row denotes the saved checkpoint.
|
546 |
+
</details>
|
547 |
+
|
548 |
+
### Framework Versions
|
549 |
+
- Python: 3.10.12
|
550 |
+
- Sentence Transformers: 3.4.0
|
551 |
+
- Transformers: 4.48.1
|
552 |
+
- PyTorch: 2.5.1+cu124
|
553 |
+
- Accelerate: 1.3.0
|
554 |
+
- Datasets: 3.2.0
|
555 |
+
- Tokenizers: 0.21.0
|
556 |
+
|
557 |
+
## Citation
|
558 |
+
|
559 |
+
### BibTeX
|
560 |
+
|
561 |
+
#### Sentence Transformers
|
562 |
+
```bibtex
|
563 |
+
@inproceedings{reimers-2019-sentence-bert,
|
564 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
565 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
566 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
567 |
+
month = "11",
|
568 |
+
year = "2019",
|
569 |
+
publisher = "Association for Computational Linguistics",
|
570 |
+
url = "https://arxiv.org/abs/1908.10084",
|
571 |
+
}
|
572 |
+
```
|
573 |
+
|
574 |
+
<!--
|
575 |
+
## Glossary
|
576 |
+
|
577 |
+
*Clearly define terms in order to be accessible across audiences.*
|
578 |
+
-->
|
579 |
+
|
580 |
+
<!--
|
581 |
+
## Model Card Authors
|
582 |
+
|
583 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
584 |
+
-->
|
585 |
+
|
586 |
+
<!--
|
587 |
+
## Model Card Contact
|
588 |
+
|
589 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
590 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/paraphrase-miniLM-L12-v2",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.48.1",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.0",
|
4 |
+
"transformers": "4.48.1",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52ad846c21fd086b25141efbef54b405e3176c73c79b1411858fd6e2c6047bd7
|
3 |
+
size 133462128
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 256,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|