SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-MiniLM-L12-v2 on the query-hard-pos-neg-doc-pairs-statictable dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-miniLM-v1")
# Run inference
sentences = [
    'Bagaimana perkembangan koperasi di Indonesia, khususnya sekitar tayun 2000?',
    'IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor), 1996-2014 (1996=100)',
    'Rata-Rata Harian Aliran Sungai, Tinggi Aliran, dan Volume Air di Beberapa Sungai yang Daerah Pengalirannya Lebih dari 1.000 km2, 2000-2011',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric allstats-semantic-mini-v1-eval allstat-search-mini-v1-test
pearson_cosine 0.848 0.8538
spearman_cosine 0.7746 0.7768

Training Details

Training Dataset

query-hard-pos-neg-doc-pairs-statictable

  • Dataset: query-hard-pos-neg-doc-pairs-statictable at 25756d3
  • Size: 25,551 training samples
  • Columns: query, doc, and label
  • Approximate statistics based on the first 1000 samples:
    query doc label
    type string string int
    details
    • min: 9 tokens
    • mean: 28.64 tokens
    • max: 53 tokens
    • min: 11 tokens
    • mean: 36.67 tokens
    • max: 70 tokens
    • 0: ~65.80%
    • 1: ~34.20%
  • Samples:
    query doc label
    Gaji nominal, indeks upah: nominal & riil pekerja manufaktur non-mandor (2012=100), 2013-2014 Ringkasan Neraca Arus Dana, Triwulan I, 2007, (Miliar Rupiah) 0
    gaji nominal, indeks upah: nominal & riil pekerja manufaktur non-mandor (2012=100), 2013-2014 Ringkasan Neraca Arus Dana, Triwulan I, 2007, (Miliar Rupiah) 0
    GAJI NOMINAL, INDEKS UPAH: NOMINAL & RIIL PEKERJA MANUFAKTUR NON-MANDOR (2012=100), 2013-2014 Ringkasan Neraca Arus Dana, Triwulan I, 2007, (Miliar Rupiah) 0
  • Loss: OnlineContrastiveLoss

Evaluation Dataset

query-hard-pos-neg-doc-pairs-statictable

  • Dataset: query-hard-pos-neg-doc-pairs-statictable at 25756d3
  • Size: 5,463 evaluation samples
  • Columns: query, doc, and label
  • Approximate statistics based on the first 1000 samples:
    query doc label
    type string string int
    details
    • min: 10 tokens
    • mean: 29.3 tokens
    • max: 62 tokens
    • min: 12 tokens
    • mean: 37.1 tokens
    • max: 69 tokens
    • 0: ~73.20%
    • 1: ~26.80%
  • Samples:
    query doc label
    Bagaimana penghasilan wirausahawan di Indonesia bervariasi per provinsi dan jenis pekerjaan utama di tahun 2016? Realisasi Penerimaan dan Pengeluaran Pemerintah Desa (Juta Rupiah) di Perkotaan menurut Provinsi, 2000-2012 0
    bagaimana penghasilan wirausahawan di indonesia bervariasi per provinsi dan jenis pekerjaan utama di tahun 2016? Realisasi Penerimaan dan Pengeluaran Pemerintah Desa (Juta Rupiah) di Perkotaan menurut Provinsi, 2000-2012 0
    BAGAIMANA PENGHASILAN WIRAUSAHAWAN DI INDONESIA BERVARIASI PER PROVINSI DAN JENIS PEKERJAAN UTAMA DI TAHUN 2016? Realisasi Penerimaan dan Pengeluaran Pemerintah Desa (Juta Rupiah) di Perkotaan menurut Provinsi, 2000-2012 0
  • Loss: OnlineContrastiveLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True
  • eval_on_start: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: True
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss allstats-semantic-mini-v1-eval_spearman_cosine allstat-search-mini-v1-test_spearman_cosine
0 0 - 1.0797 0.5314 -
0.0250 20 1.2823 0.9331 0.5510 -
0.0501 40 0.9562 0.6159 0.6492 -
0.0751 60 0.5872 0.4629 0.6913 -
0.1001 80 0.4101 0.3605 0.7221 -
0.1252 100 0.419 0.3919 0.7301 -
0.1502 120 0.1517 0.2565 0.7457 -
0.1752 140 0.2678 0.2503 0.7484 -
0.2003 160 0.225 0.2010 0.7546 -
0.2253 180 0.2846 0.3203 0.7420 -
0.2503 200 0.2086 0.1981 0.7589 -
0.2753 220 0.1255 0.1982 0.7610 -
0.3004 240 0.1182 0.2328 0.7583 -
0.3254 260 0.1328 0.2218 0.7561 -
0.3504 280 0.1228 0.4583 0.7343 -
0.3755 300 0.1394 0.1785 0.7705 -
0.4005 320 0.2577 0.1800 0.7650 -
0.4255 340 0.1903 0.2680 0.7557 -
0.4506 360 0.1164 0.1761 0.7616 -
0.4756 380 0.0779 0.3318 0.7453 -
0.5006 400 0.1563 0.2209 0.7582 -
0.5257 420 0.1835 0.1683 0.7662 -
0.5507 440 0.1171 0.1537 0.7658 -
0.5757 460 0.0973 0.1381 0.7710 -
0.6008 480 0.0578 0.2303 0.7618 -
0.6258 500 0.1343 0.1431 0.7710 -
0.6508 520 0.1274 0.1646 0.7695 -
0.6758 540 0.057 0.1775 0.7606 -
0.7009 560 0.0392 0.1425 0.7689 -
0.7259 580 0.0434 0.1399 0.7712 -
0.7509 600 0.1311 0.1747 0.7670 -
0.7760 620 0.0475 0.1375 0.7709 -
0.8010 640 0.0183 0.1465 0.7685 -
0.8260 660 0.024 0.1666 0.7669 -
0.8511 680 0.0249 0.1728 0.7656 -
0.8761 700 0.041 0.1624 0.7711 -
0.9011 720 0.0835 0.1397 0.7716 -
0.9262 740 0.0404 0.1507 0.7693 -
0.9512 760 0.0141 0.1369 0.7723 -
0.9762 780 0.0513 0.1555 0.7687 -
1.0013 800 0.0387 0.1306 0.7717 -
1.0263 820 0.0393 0.1420 0.7707 -
1.0513 840 0.0153 0.1656 0.7700 -
1.0763 860 0.0263 0.1525 0.7694 -
1.1014 880 0.0503 0.1947 0.7638 -
1.1264 900 0.0215 0.2202 0.7615 -
1.1514 920 0.0217 0.1542 0.7696 -
1.1765 940 0.007 0.1394 0.7713 -
1.2015 960 0.018 0.1573 0.7706 -
1.2265 980 0.0446 0.1504 0.7686 -
1.2516 1000 0.026 0.1573 0.7661 -
1.2766 1020 0.0098 0.1429 0.7683 -
1.3016 1040 0.0196 0.1374 0.7702 -
1.3267 1060 0.021 0.1594 0.7685 -
1.3517 1080 0.0499 0.1378 0.7724 -
1.3767 1100 0.0165 0.1335 0.7729 -
1.4018 1120 0.0294 0.1451 0.7713 -
1.4268 1140 0.0114 0.1338 0.7717 -
1.4518 1160 0.0192 0.1327 0.7719 -
1.4768 1180 0.0335 0.1618 0.7646 -
1.5019 1200 0.0546 0.1389 0.7711 -
1.5269 1220 0.0069 0.1239 0.7738 -
1.5519 1240 0.0094 0.1180 0.7739 -
1.5770 1260 0.0074 0.1238 0.7733 -
1.6020 1280 0.0557 0.1428 0.7720 -
1.6270 1300 0.056 0.1159 0.7751 -
1.6521 1320 0.0 0.1244 0.7758 -
1.6771 1340 0.0066 0.1185 0.7735 -
1.7021 1360 0.0178 0.1016 0.7757 -
1.7272 1380 0.0156 0.0939 0.7776 -
1.7522 1400 0.0 0.1138 0.7761 -
1.7772 1420 0.0436 0.0980 0.7775 -
1.8023 1440 0.0626 0.1096 0.7763 -
1.8273 1460 0.0222 0.0968 0.7774 -
1.8523 1480 0.0101 0.1021 0.7762 -
1.8773 1500 0.0171 0.1076 0.7754 -
1.9024 1520 0.0064 0.1279 0.7730 -
1.9274 1540 0.0068 0.1237 0.7729 -
1.9524 1560 0.0066 0.1229 0.7733 -
1.9775 1580 0.0 0.1263 0.7731 -
2.0025 1600 0.0065 0.1152 0.7746 -
2.0275 1620 0.0147 0.1021 0.7773 -
2.0526 1640 0.0 0.1021 0.7773 -
2.0776 1660 0.0209 0.1017 0.7774 -
2.1026 1680 0.0 0.0993 0.7773 -
2.1277 1700 0.0067 0.0922 0.7784 -
2.1527 1720 0.0333 0.1158 0.7749 -
2.1777 1740 0.0 0.1397 0.7721 -
2.2028 1760 0.0158 0.1248 0.7751 -
2.2278 1780 0.0201 0.1021 0.7767 -
2.2528 1800 0.0 0.1029 0.7768 -
2.2778 1820 0.0107 0.1007 0.7767 -
2.3029 1840 0.0156 0.0923 0.7767 -
2.3279 1860 0.0 0.1012 0.7754 -
2.3529 1880 0.0131 0.1184 0.7731 -
2.3780 1900 0.0072 0.1113 0.7752 -
2.4030 1920 0.0337 0.0952 0.7775 -
2.4280 1940 0.0068 0.1086 0.7754 -
2.4531 1960 0.0 0.1194 0.7740 -
2.4781 1980 0.0176 0.1184 0.7747 -
2.5031 2000 0.0188 0.1123 0.7745 -
2.5282 2020 0.0 0.1138 0.7742 -
2.5532 2040 0.0 0.1141 0.7742 -
2.5782 2060 0.0269 0.1126 0.7743 -
2.6033 2080 0.0193 0.1470 0.7707 -
2.6283 2100 0.0074 0.1333 0.7726 -
2.6533 2120 0.0253 0.1004 0.7756 -
2.6783 2140 0.0 0.0980 0.7758 -
2.7034 2160 0.0 0.0984 0.7758 -
2.7284 2180 0.0 0.0984 0.7758 -
2.7534 2200 0.0 0.0984 0.7758 -
2.7785 2220 0.007 0.0971 0.7766 -
2.8035 2240 0.0 0.0998 0.7766 -
2.8285 2260 0.015 0.0988 0.7760 -
2.8536 2280 0.0 0.1020 0.7757 -
2.8786 2300 0.0 0.1023 0.7756 -
2.9036 2320 0.0 0.1023 0.7756 -
2.9287 2340 0.0 0.1023 0.7756 -
2.9537 2360 0.0075 0.1043 0.7751 -
2.9787 2380 0.0067 0.1125 0.7749 -
3.0038 2400 0.0 0.1083 0.7752 -
3.0288 2420 0.0 0.1083 0.7752 -
3.0538 2440 0.0 0.1083 0.7752 -
3.0788 2460 0.0063 0.1018 0.7755 -
3.1039 2480 0.0 0.1012 0.7756 -
3.1289 2500 0.0162 0.092 0.7768 -
3.1539 2520 0.01 0.0941 0.7768 -
3.1790 2540 0.0069 0.0946 0.7761 -
3.2040 2560 0.0 0.0956 0.7759 -
3.2290 2580 0.0 0.0956 0.7758 -
3.2541 2600 0.0 0.0956 0.7758 -
3.2791 2620 0.0 0.0956 0.7758 -
3.3041 2640 0.0131 0.0981 0.7756 -
3.3292 2660 0.0195 0.1142 0.7748 -
3.3542 2680 0.0 0.1172 0.7746 -
3.3792 2700 0.0065 0.1186 0.7748 -
3.4043 2720 0.0169 0.1184 0.7750 -
3.4293 2740 0.0 0.1175 0.7749 -
3.4543 2760 0.0 0.1165 0.7748 -
3.4793 2780 0.0105 0.1173 0.7747 -
3.5044 2800 0.0066 0.1123 0.7751 -
3.5294 2820 0.0 0.1103 0.7753 -
3.5544 2840 0.0 0.1106 0.7753 -
3.5795 2860 0.0139 0.1158 0.7745 -
3.6045 2880 0.0 0.1183 0.7741 -
3.6295 2900 0.0 0.1181 0.7741 -
3.6546 2920 0.0 0.1179 0.7741 -
3.6796 2940 0.0 0.1179 0.7741 -
3.7046 2960 0.0119 0.1172 0.7742 -
3.7297 2980 0.0068 0.1183 0.7742 -
3.7547 3000 0.0 0.1193 0.7741 -
3.7797 3020 0.0 0.1193 0.7741 -
3.8048 3040 0.0 0.1193 0.7741 -
3.8298 3060 0.0 0.1191 0.7741 -
3.8548 3080 0.0 0.1193 0.7741 -
3.8798 3100 0.0 0.1193 0.7741 -
3.9049 3120 0.0131 0.1165 0.7745 -
3.9299 3140 0.0 0.1159 0.7745 -
3.9549 3160 0.0 0.1158 0.7746 -
3.9800 3180 0.0 0.1153 0.7746 -
-1 -1 - - - 0.7768
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.4.0
  • Transformers: 4.48.1
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
9
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for yahyaabd/allstats-search-miniLM-v1

Finetuned
(2)
this model

Dataset used to train yahyaabd/allstats-search-miniLM-v1

Evaluation results