metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:25551
- loss:OnlineContrastiveLoss
base_model: sentence-transformers/paraphrase-MiniLM-L12-v2
widget:
- source_sentence: >-
Berapa gaji ratarata buruhkaryawan di Indonesia lihat dari umur dan
lapangan pekerjaannya 2019
sentences:
- Rasio laju peningkatan konsumsi tanah dengan laju pertumbuhan penduduk
- >-
Rata-rata UpahGaji Bersih sebulan Buruh/Karyawan Pegawai Menurut
Kelompok Umur dan lapangan pekerjaan utama, 2019
- Ringkasan Neraca Arus Dana, Triwulan Pertama, 2005, (Miliar Rupiah)
- source_sentence: >-
Average monthly net wage/salary of employees by age group and type of work
(Rupiah), 2018
sentences:
- Ringkasan Neraca Arus Dana, Triwulan III, 2014**), (Miliar Rupiah)
- >-
Nilai Produksi dan Biaya Produksi Rumah Tangga Usaha Peternakan Menurut
Jenis Ternak, 2014
- >-
Rekapitulasi Laporan Posisi Keuangan Perusahaan Penyelenggara Program
Asuransi Wajib dan BPJS Per 31 Desember (miliar rupiah) 2000-2021
- source_sentence: jumlah pembangunan fasilitas sekolah baru
sentences:
- >-
Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut
Pendidikan Tertinggi yang Ditamatkan dan Lapangan Pekerjaan Utama di 9
Sektor (rupiah), 2017
- >-
Posisi Kredit Perbankan1dalam Rupiah dan Valuta Asing Menurut Sektor
Ekonomi (miliar rupiah), 2016-2018
- >-
Angka Kematian Bayi/AKB (Infant Mortality Rate/IMR) Hasil Long Form
SP2020 Menurut Provinsi/Kabupaten/Kota, 2020
- source_sentence: >-
Data Pendapatan Rata-rata Orang Yang Berusaha Sendiri Per Provinsi,
Berdasarkan Lapangan Pekerjaan Utama (2020)
sentences:
- >-
Nilai Pendapatan Disposabel Menurut Golongan Rumah Tangga (miliar
rupiah), 2000, 2005, dan 2008
- >-
IHK dan Rata-rata Upah per Bulan Buruh Pertambangan di Bawah Mandor
(Supervisor), 1996-2014 (1996=100)
- Ringkasan Neraca Arus Dana Tahun 2004 (Miliar Rupiah)
- source_sentence: >-
Bagaimana perkembangan koperasi di Indonesia, khususnya sekitar tayun
2000?
sentences:
- >-
Rata-Rata Harian Aliran Sungai, Tinggi Aliran, dan Volume Air di
Beberapa Sungai yang Daerah Pengalirannya Lebih dari 1.000 km2,
2000-2011
- >-
Penduduk Berumur 15 Tahun Ke Atas yang Bekerja Selama Seminggu yang Lalu
Menurut Golongan Umur dan Jumlah Jam Kerja Seluruhnya, 2008 - 2024
- >-
IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor
(Supervisor), 1996-2014 (1996=100)
datasets:
- yahyaabd/query-hard-pos-neg-doc-pairs-statictable
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: >-
SentenceTransformer based on
sentence-transformers/paraphrase-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstats semantic mini v1 eval
type: allstats-semantic-mini-v1-eval
metrics:
- type: pearson_cosine
value: 0.8479971660039509
name: Pearson Cosine
- type: spearman_cosine
value: 0.7745638757528484
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstat search mini v1 test
type: allstat-search-mini-v1-test
metrics:
- type: pearson_cosine
value: 0.8538445733470035
name: Pearson Cosine
- type: spearman_cosine
value: 0.7767623851780713
name: Spearman Cosine
SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-MiniLM-L12-v2 on the query-hard-pos-neg-doc-pairs-statictable dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-MiniLM-L12-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-miniLM-v1")
# Run inference
sentences = [
'Bagaimana perkembangan koperasi di Indonesia, khususnya sekitar tayun 2000?',
'IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor), 1996-2014 (1996=100)',
'Rata-Rata Harian Aliran Sungai, Tinggi Aliran, dan Volume Air di Beberapa Sungai yang Daerah Pengalirannya Lebih dari 1.000 km2, 2000-2011',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
allstats-semantic-mini-v1-eval
andallstat-search-mini-v1-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | allstats-semantic-mini-v1-eval | allstat-search-mini-v1-test |
---|---|---|
pearson_cosine | 0.848 | 0.8538 |
spearman_cosine | 0.7746 | 0.7768 |
Training Details
Training Dataset
query-hard-pos-neg-doc-pairs-statictable
- Dataset: query-hard-pos-neg-doc-pairs-statictable at 25756d3
- Size: 25,551 training samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string int details - min: 9 tokens
- mean: 28.64 tokens
- max: 53 tokens
- min: 11 tokens
- mean: 36.67 tokens
- max: 70 tokens
- 0: ~65.80%
- 1: ~34.20%
- Samples:
query doc label Gaji nominal, indeks upah: nominal & riil pekerja manufaktur non-mandor (2012=100), 2013-2014
Ringkasan Neraca Arus Dana, Triwulan I, 2007, (Miliar Rupiah)
0
gaji nominal, indeks upah: nominal & riil pekerja manufaktur non-mandor (2012=100), 2013-2014
Ringkasan Neraca Arus Dana, Triwulan I, 2007, (Miliar Rupiah)
0
GAJI NOMINAL, INDEKS UPAH: NOMINAL & RIIL PEKERJA MANUFAKTUR NON-MANDOR (2012=100), 2013-2014
Ringkasan Neraca Arus Dana, Triwulan I, 2007, (Miliar Rupiah)
0
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
query-hard-pos-neg-doc-pairs-statictable
- Dataset: query-hard-pos-neg-doc-pairs-statictable at 25756d3
- Size: 5,463 evaluation samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string int details - min: 10 tokens
- mean: 29.3 tokens
- max: 62 tokens
- min: 12 tokens
- mean: 37.1 tokens
- max: 69 tokens
- 0: ~73.20%
- 1: ~26.80%
- Samples:
query doc label Bagaimana penghasilan wirausahawan di Indonesia bervariasi per provinsi dan jenis pekerjaan utama di tahun 2016?
Realisasi Penerimaan dan Pengeluaran Pemerintah Desa (Juta Rupiah) di Perkotaan menurut Provinsi, 2000-2012
0
bagaimana penghasilan wirausahawan di indonesia bervariasi per provinsi dan jenis pekerjaan utama di tahun 2016?
Realisasi Penerimaan dan Pengeluaran Pemerintah Desa (Juta Rupiah) di Perkotaan menurut Provinsi, 2000-2012
0
BAGAIMANA PENGHASILAN WIRAUSAHAWAN DI INDONESIA BERVARIASI PER PROVINSI DAN JENIS PEKERJAAN UTAMA DI TAHUN 2016?
Realisasi Penerimaan dan Pengeluaran Pemerintah Desa (Juta Rupiah) di Perkotaan menurut Provinsi, 2000-2012
0
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 4warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Trueeval_on_start
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | allstats-semantic-mini-v1-eval_spearman_cosine | allstat-search-mini-v1-test_spearman_cosine |
---|---|---|---|---|---|
0 | 0 | - | 1.0797 | 0.5314 | - |
0.0250 | 20 | 1.2823 | 0.9331 | 0.5510 | - |
0.0501 | 40 | 0.9562 | 0.6159 | 0.6492 | - |
0.0751 | 60 | 0.5872 | 0.4629 | 0.6913 | - |
0.1001 | 80 | 0.4101 | 0.3605 | 0.7221 | - |
0.1252 | 100 | 0.419 | 0.3919 | 0.7301 | - |
0.1502 | 120 | 0.1517 | 0.2565 | 0.7457 | - |
0.1752 | 140 | 0.2678 | 0.2503 | 0.7484 | - |
0.2003 | 160 | 0.225 | 0.2010 | 0.7546 | - |
0.2253 | 180 | 0.2846 | 0.3203 | 0.7420 | - |
0.2503 | 200 | 0.2086 | 0.1981 | 0.7589 | - |
0.2753 | 220 | 0.1255 | 0.1982 | 0.7610 | - |
0.3004 | 240 | 0.1182 | 0.2328 | 0.7583 | - |
0.3254 | 260 | 0.1328 | 0.2218 | 0.7561 | - |
0.3504 | 280 | 0.1228 | 0.4583 | 0.7343 | - |
0.3755 | 300 | 0.1394 | 0.1785 | 0.7705 | - |
0.4005 | 320 | 0.2577 | 0.1800 | 0.7650 | - |
0.4255 | 340 | 0.1903 | 0.2680 | 0.7557 | - |
0.4506 | 360 | 0.1164 | 0.1761 | 0.7616 | - |
0.4756 | 380 | 0.0779 | 0.3318 | 0.7453 | - |
0.5006 | 400 | 0.1563 | 0.2209 | 0.7582 | - |
0.5257 | 420 | 0.1835 | 0.1683 | 0.7662 | - |
0.5507 | 440 | 0.1171 | 0.1537 | 0.7658 | - |
0.5757 | 460 | 0.0973 | 0.1381 | 0.7710 | - |
0.6008 | 480 | 0.0578 | 0.2303 | 0.7618 | - |
0.6258 | 500 | 0.1343 | 0.1431 | 0.7710 | - |
0.6508 | 520 | 0.1274 | 0.1646 | 0.7695 | - |
0.6758 | 540 | 0.057 | 0.1775 | 0.7606 | - |
0.7009 | 560 | 0.0392 | 0.1425 | 0.7689 | - |
0.7259 | 580 | 0.0434 | 0.1399 | 0.7712 | - |
0.7509 | 600 | 0.1311 | 0.1747 | 0.7670 | - |
0.7760 | 620 | 0.0475 | 0.1375 | 0.7709 | - |
0.8010 | 640 | 0.0183 | 0.1465 | 0.7685 | - |
0.8260 | 660 | 0.024 | 0.1666 | 0.7669 | - |
0.8511 | 680 | 0.0249 | 0.1728 | 0.7656 | - |
0.8761 | 700 | 0.041 | 0.1624 | 0.7711 | - |
0.9011 | 720 | 0.0835 | 0.1397 | 0.7716 | - |
0.9262 | 740 | 0.0404 | 0.1507 | 0.7693 | - |
0.9512 | 760 | 0.0141 | 0.1369 | 0.7723 | - |
0.9762 | 780 | 0.0513 | 0.1555 | 0.7687 | - |
1.0013 | 800 | 0.0387 | 0.1306 | 0.7717 | - |
1.0263 | 820 | 0.0393 | 0.1420 | 0.7707 | - |
1.0513 | 840 | 0.0153 | 0.1656 | 0.7700 | - |
1.0763 | 860 | 0.0263 | 0.1525 | 0.7694 | - |
1.1014 | 880 | 0.0503 | 0.1947 | 0.7638 | - |
1.1264 | 900 | 0.0215 | 0.2202 | 0.7615 | - |
1.1514 | 920 | 0.0217 | 0.1542 | 0.7696 | - |
1.1765 | 940 | 0.007 | 0.1394 | 0.7713 | - |
1.2015 | 960 | 0.018 | 0.1573 | 0.7706 | - |
1.2265 | 980 | 0.0446 | 0.1504 | 0.7686 | - |
1.2516 | 1000 | 0.026 | 0.1573 | 0.7661 | - |
1.2766 | 1020 | 0.0098 | 0.1429 | 0.7683 | - |
1.3016 | 1040 | 0.0196 | 0.1374 | 0.7702 | - |
1.3267 | 1060 | 0.021 | 0.1594 | 0.7685 | - |
1.3517 | 1080 | 0.0499 | 0.1378 | 0.7724 | - |
1.3767 | 1100 | 0.0165 | 0.1335 | 0.7729 | - |
1.4018 | 1120 | 0.0294 | 0.1451 | 0.7713 | - |
1.4268 | 1140 | 0.0114 | 0.1338 | 0.7717 | - |
1.4518 | 1160 | 0.0192 | 0.1327 | 0.7719 | - |
1.4768 | 1180 | 0.0335 | 0.1618 | 0.7646 | - |
1.5019 | 1200 | 0.0546 | 0.1389 | 0.7711 | - |
1.5269 | 1220 | 0.0069 | 0.1239 | 0.7738 | - |
1.5519 | 1240 | 0.0094 | 0.1180 | 0.7739 | - |
1.5770 | 1260 | 0.0074 | 0.1238 | 0.7733 | - |
1.6020 | 1280 | 0.0557 | 0.1428 | 0.7720 | - |
1.6270 | 1300 | 0.056 | 0.1159 | 0.7751 | - |
1.6521 | 1320 | 0.0 | 0.1244 | 0.7758 | - |
1.6771 | 1340 | 0.0066 | 0.1185 | 0.7735 | - |
1.7021 | 1360 | 0.0178 | 0.1016 | 0.7757 | - |
1.7272 | 1380 | 0.0156 | 0.0939 | 0.7776 | - |
1.7522 | 1400 | 0.0 | 0.1138 | 0.7761 | - |
1.7772 | 1420 | 0.0436 | 0.0980 | 0.7775 | - |
1.8023 | 1440 | 0.0626 | 0.1096 | 0.7763 | - |
1.8273 | 1460 | 0.0222 | 0.0968 | 0.7774 | - |
1.8523 | 1480 | 0.0101 | 0.1021 | 0.7762 | - |
1.8773 | 1500 | 0.0171 | 0.1076 | 0.7754 | - |
1.9024 | 1520 | 0.0064 | 0.1279 | 0.7730 | - |
1.9274 | 1540 | 0.0068 | 0.1237 | 0.7729 | - |
1.9524 | 1560 | 0.0066 | 0.1229 | 0.7733 | - |
1.9775 | 1580 | 0.0 | 0.1263 | 0.7731 | - |
2.0025 | 1600 | 0.0065 | 0.1152 | 0.7746 | - |
2.0275 | 1620 | 0.0147 | 0.1021 | 0.7773 | - |
2.0526 | 1640 | 0.0 | 0.1021 | 0.7773 | - |
2.0776 | 1660 | 0.0209 | 0.1017 | 0.7774 | - |
2.1026 | 1680 | 0.0 | 0.0993 | 0.7773 | - |
2.1277 | 1700 | 0.0067 | 0.0922 | 0.7784 | - |
2.1527 | 1720 | 0.0333 | 0.1158 | 0.7749 | - |
2.1777 | 1740 | 0.0 | 0.1397 | 0.7721 | - |
2.2028 | 1760 | 0.0158 | 0.1248 | 0.7751 | - |
2.2278 | 1780 | 0.0201 | 0.1021 | 0.7767 | - |
2.2528 | 1800 | 0.0 | 0.1029 | 0.7768 | - |
2.2778 | 1820 | 0.0107 | 0.1007 | 0.7767 | - |
2.3029 | 1840 | 0.0156 | 0.0923 | 0.7767 | - |
2.3279 | 1860 | 0.0 | 0.1012 | 0.7754 | - |
2.3529 | 1880 | 0.0131 | 0.1184 | 0.7731 | - |
2.3780 | 1900 | 0.0072 | 0.1113 | 0.7752 | - |
2.4030 | 1920 | 0.0337 | 0.0952 | 0.7775 | - |
2.4280 | 1940 | 0.0068 | 0.1086 | 0.7754 | - |
2.4531 | 1960 | 0.0 | 0.1194 | 0.7740 | - |
2.4781 | 1980 | 0.0176 | 0.1184 | 0.7747 | - |
2.5031 | 2000 | 0.0188 | 0.1123 | 0.7745 | - |
2.5282 | 2020 | 0.0 | 0.1138 | 0.7742 | - |
2.5532 | 2040 | 0.0 | 0.1141 | 0.7742 | - |
2.5782 | 2060 | 0.0269 | 0.1126 | 0.7743 | - |
2.6033 | 2080 | 0.0193 | 0.1470 | 0.7707 | - |
2.6283 | 2100 | 0.0074 | 0.1333 | 0.7726 | - |
2.6533 | 2120 | 0.0253 | 0.1004 | 0.7756 | - |
2.6783 | 2140 | 0.0 | 0.0980 | 0.7758 | - |
2.7034 | 2160 | 0.0 | 0.0984 | 0.7758 | - |
2.7284 | 2180 | 0.0 | 0.0984 | 0.7758 | - |
2.7534 | 2200 | 0.0 | 0.0984 | 0.7758 | - |
2.7785 | 2220 | 0.007 | 0.0971 | 0.7766 | - |
2.8035 | 2240 | 0.0 | 0.0998 | 0.7766 | - |
2.8285 | 2260 | 0.015 | 0.0988 | 0.7760 | - |
2.8536 | 2280 | 0.0 | 0.1020 | 0.7757 | - |
2.8786 | 2300 | 0.0 | 0.1023 | 0.7756 | - |
2.9036 | 2320 | 0.0 | 0.1023 | 0.7756 | - |
2.9287 | 2340 | 0.0 | 0.1023 | 0.7756 | - |
2.9537 | 2360 | 0.0075 | 0.1043 | 0.7751 | - |
2.9787 | 2380 | 0.0067 | 0.1125 | 0.7749 | - |
3.0038 | 2400 | 0.0 | 0.1083 | 0.7752 | - |
3.0288 | 2420 | 0.0 | 0.1083 | 0.7752 | - |
3.0538 | 2440 | 0.0 | 0.1083 | 0.7752 | - |
3.0788 | 2460 | 0.0063 | 0.1018 | 0.7755 | - |
3.1039 | 2480 | 0.0 | 0.1012 | 0.7756 | - |
3.1289 | 2500 | 0.0162 | 0.092 | 0.7768 | - |
3.1539 | 2520 | 0.01 | 0.0941 | 0.7768 | - |
3.1790 | 2540 | 0.0069 | 0.0946 | 0.7761 | - |
3.2040 | 2560 | 0.0 | 0.0956 | 0.7759 | - |
3.2290 | 2580 | 0.0 | 0.0956 | 0.7758 | - |
3.2541 | 2600 | 0.0 | 0.0956 | 0.7758 | - |
3.2791 | 2620 | 0.0 | 0.0956 | 0.7758 | - |
3.3041 | 2640 | 0.0131 | 0.0981 | 0.7756 | - |
3.3292 | 2660 | 0.0195 | 0.1142 | 0.7748 | - |
3.3542 | 2680 | 0.0 | 0.1172 | 0.7746 | - |
3.3792 | 2700 | 0.0065 | 0.1186 | 0.7748 | - |
3.4043 | 2720 | 0.0169 | 0.1184 | 0.7750 | - |
3.4293 | 2740 | 0.0 | 0.1175 | 0.7749 | - |
3.4543 | 2760 | 0.0 | 0.1165 | 0.7748 | - |
3.4793 | 2780 | 0.0105 | 0.1173 | 0.7747 | - |
3.5044 | 2800 | 0.0066 | 0.1123 | 0.7751 | - |
3.5294 | 2820 | 0.0 | 0.1103 | 0.7753 | - |
3.5544 | 2840 | 0.0 | 0.1106 | 0.7753 | - |
3.5795 | 2860 | 0.0139 | 0.1158 | 0.7745 | - |
3.6045 | 2880 | 0.0 | 0.1183 | 0.7741 | - |
3.6295 | 2900 | 0.0 | 0.1181 | 0.7741 | - |
3.6546 | 2920 | 0.0 | 0.1179 | 0.7741 | - |
3.6796 | 2940 | 0.0 | 0.1179 | 0.7741 | - |
3.7046 | 2960 | 0.0119 | 0.1172 | 0.7742 | - |
3.7297 | 2980 | 0.0068 | 0.1183 | 0.7742 | - |
3.7547 | 3000 | 0.0 | 0.1193 | 0.7741 | - |
3.7797 | 3020 | 0.0 | 0.1193 | 0.7741 | - |
3.8048 | 3040 | 0.0 | 0.1193 | 0.7741 | - |
3.8298 | 3060 | 0.0 | 0.1191 | 0.7741 | - |
3.8548 | 3080 | 0.0 | 0.1193 | 0.7741 | - |
3.8798 | 3100 | 0.0 | 0.1193 | 0.7741 | - |
3.9049 | 3120 | 0.0131 | 0.1165 | 0.7745 | - |
3.9299 | 3140 | 0.0 | 0.1159 | 0.7745 | - |
3.9549 | 3160 | 0.0 | 0.1158 | 0.7746 | - |
3.9800 | 3180 | 0.0 | 0.1153 | 0.7746 | - |
-1 | -1 | - | - | - | 0.7768 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}