|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:25551 |
|
- loss:OnlineContrastiveLoss |
|
base_model: sentence-transformers/paraphrase-MiniLM-L12-v2 |
|
widget: |
|
- source_sentence: Berapa gaji ratarata buruhkaryawan di Indonesia lihat dari umur |
|
dan lapangan pekerjaannya 2019 |
|
sentences: |
|
- Rasio laju peningkatan konsumsi tanah dengan laju pertumbuhan penduduk |
|
- Rata-rata UpahGaji Bersih sebulan Buruh/Karyawan Pegawai Menurut Kelompok Umur |
|
dan lapangan pekerjaan utama, 2019 |
|
- Ringkasan Neraca Arus Dana, Triwulan Pertama, 2005, (Miliar Rupiah) |
|
- source_sentence: Average monthly net wage/salary of employees by age group and type |
|
of work (Rupiah), 2018 |
|
sentences: |
|
- Ringkasan Neraca Arus Dana, Triwulan III, 2014**), (Miliar Rupiah) |
|
- Nilai Produksi dan Biaya Produksi Rumah Tangga Usaha Peternakan Menurut Jenis |
|
Ternak, 2014 |
|
- Rekapitulasi Laporan Posisi Keuangan Perusahaan Penyelenggara Program Asuransi |
|
Wajib dan BPJS Per 31 Desember (miliar rupiah) 2000-2021 |
|
- source_sentence: jumlah pembangunan fasilitas sekolah baru |
|
sentences: |
|
- Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Pendidikan Tertinggi |
|
yang Ditamatkan dan Lapangan Pekerjaan Utama di 9 Sektor (rupiah), 2017 |
|
- Posisi Kredit Perbankan1dalam Rupiah dan Valuta Asing Menurut Sektor Ekonomi (miliar |
|
rupiah), 2016-2018 |
|
- Angka Kematian Bayi/AKB (Infant Mortality Rate/IMR) Hasil Long Form SP2020 Menurut |
|
Provinsi/Kabupaten/Kota, 2020 |
|
- source_sentence: Data Pendapatan Rata-rata Orang Yang Berusaha Sendiri Per Provinsi, |
|
Berdasarkan Lapangan Pekerjaan Utama (2020) |
|
sentences: |
|
- Nilai Pendapatan Disposabel Menurut Golongan Rumah Tangga (miliar rupiah), 2000, |
|
2005, dan 2008 |
|
- IHK dan Rata-rata Upah per Bulan Buruh Pertambangan di Bawah Mandor (Supervisor), |
|
1996-2014 (1996=100) |
|
- Ringkasan Neraca Arus Dana Tahun 2004 (Miliar Rupiah) |
|
- source_sentence: Bagaimana perkembangan koperasi di Indonesia, khususnya sekitar |
|
tayun 2000? |
|
sentences: |
|
- Rata-Rata Harian Aliran Sungai, Tinggi Aliran, dan Volume Air di Beberapa Sungai |
|
yang Daerah Pengalirannya Lebih dari 1.000 km2, 2000-2011 |
|
- Penduduk Berumur 15 Tahun Ke Atas yang Bekerja Selama Seminggu yang Lalu Menurut |
|
Golongan Umur dan Jumlah Jam Kerja Seluruhnya, 2008 - 2024 |
|
- IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor), |
|
1996-2014 (1996=100) |
|
datasets: |
|
- yahyaabd/query-hard-pos-neg-doc-pairs-statictable |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L12-v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: allstats semantic mini v1 eval |
|
type: allstats-semantic-mini-v1-eval |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8479971660039509 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7745638757528484 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: allstat search mini v1 test |
|
type: allstat-search-mini-v1-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8538445733470035 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7767623851780713 |
|
name: Spearman Cosine |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L12-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L12-v2) on the [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/paraphrase-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L12-v2) <!-- at revision 3f21b01a41e265ecb43cef6afeef20b7e578b637 --> |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Output Dimensionality:** 384 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("yahyaabd/allstats-search-miniLM-v1") |
|
# Run inference |
|
sentences = [ |
|
'Bagaimana perkembangan koperasi di Indonesia, khususnya sekitar tayun 2000?', |
|
'IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor), 1996-2014 (1996=100)', |
|
'Rata-Rata Harian Aliran Sungai, Tinggi Aliran, dan Volume Air di Beberapa Sungai yang Daerah Pengalirannya Lebih dari 1.000 km2, 2000-2011', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Datasets: `allstats-semantic-mini-v1-eval` and `allstat-search-mini-v1-test` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | allstats-semantic-mini-v1-eval | allstat-search-mini-v1-test | |
|
|:--------------------|:-------------------------------|:----------------------------| |
|
| pearson_cosine | 0.848 | 0.8538 | |
|
| **spearman_cosine** | **0.7746** | **0.7768** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### query-hard-pos-neg-doc-pairs-statictable |
|
|
|
* Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [25756d3](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/25756d36046bf92b56bce1b450fd080853688667) |
|
* Size: 25,551 training samples |
|
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | doc | label | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 9 tokens</li><li>mean: 28.64 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 36.67 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>0: ~65.80%</li><li>1: ~34.20%</li></ul> | |
|
* Samples: |
|
| query | doc | label | |
|
|:-----------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------|:---------------| |
|
| <code>Gaji nominal, indeks upah: nominal & riil pekerja manufaktur non-mandor (2012=100), 2013-2014</code> | <code>Ringkasan Neraca Arus Dana, Triwulan I, 2007, (Miliar Rupiah)</code> | <code>0</code> | |
|
| <code>gaji nominal, indeks upah: nominal & riil pekerja manufaktur non-mandor (2012=100), 2013-2014</code> | <code>Ringkasan Neraca Arus Dana, Triwulan I, 2007, (Miliar Rupiah)</code> | <code>0</code> | |
|
| <code>GAJI NOMINAL, INDEKS UPAH: NOMINAL & RIIL PEKERJA MANUFAKTUR NON-MANDOR (2012=100), 2013-2014</code> | <code>Ringkasan Neraca Arus Dana, Triwulan I, 2007, (Miliar Rupiah)</code> | <code>0</code> | |
|
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss) |
|
|
|
### Evaluation Dataset |
|
|
|
#### query-hard-pos-neg-doc-pairs-statictable |
|
|
|
* Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [25756d3](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/25756d36046bf92b56bce1b450fd080853688667) |
|
* Size: 5,463 evaluation samples |
|
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | doc | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 10 tokens</li><li>mean: 29.3 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 37.1 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>0: ~73.20%</li><li>1: ~26.80%</li></ul> | |
|
* Samples: |
|
| query | doc | label | |
|
|:------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------|:---------------| |
|
| <code>Bagaimana penghasilan wirausahawan di Indonesia bervariasi per provinsi dan jenis pekerjaan utama di tahun 2016?</code> | <code>Realisasi Penerimaan dan Pengeluaran Pemerintah Desa (Juta Rupiah) di Perkotaan menurut Provinsi, 2000-2012</code> | <code>0</code> | |
|
| <code>bagaimana penghasilan wirausahawan di indonesia bervariasi per provinsi dan jenis pekerjaan utama di tahun 2016?</code> | <code>Realisasi Penerimaan dan Pengeluaran Pemerintah Desa (Juta Rupiah) di Perkotaan menurut Provinsi, 2000-2012</code> | <code>0</code> | |
|
| <code>BAGAIMANA PENGHASILAN WIRAUSAHAWAN DI INDONESIA BERVARIASI PER PROVINSI DAN JENIS PEKERJAAN UTAMA DI TAHUN 2016?</code> | <code>Realisasi Penerimaan dan Pengeluaran Pemerintah Desa (Juta Rupiah) di Perkotaan menurut Provinsi, 2000-2012</code> | <code>0</code> | |
|
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss) |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `num_train_epochs`: 4 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `load_best_model_at_end`: True |
|
- `eval_on_start`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: True |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-mini-v1-eval_spearman_cosine | allstat-search-mini-v1-test_spearman_cosine | |
|
|:----------:|:--------:|:-------------:|:---------------:|:----------------------------------------------:|:-------------------------------------------:| |
|
| 0 | 0 | - | 1.0797 | 0.5314 | - | |
|
| 0.0250 | 20 | 1.2823 | 0.9331 | 0.5510 | - | |
|
| 0.0501 | 40 | 0.9562 | 0.6159 | 0.6492 | - | |
|
| 0.0751 | 60 | 0.5872 | 0.4629 | 0.6913 | - | |
|
| 0.1001 | 80 | 0.4101 | 0.3605 | 0.7221 | - | |
|
| 0.1252 | 100 | 0.419 | 0.3919 | 0.7301 | - | |
|
| 0.1502 | 120 | 0.1517 | 0.2565 | 0.7457 | - | |
|
| 0.1752 | 140 | 0.2678 | 0.2503 | 0.7484 | - | |
|
| 0.2003 | 160 | 0.225 | 0.2010 | 0.7546 | - | |
|
| 0.2253 | 180 | 0.2846 | 0.3203 | 0.7420 | - | |
|
| 0.2503 | 200 | 0.2086 | 0.1981 | 0.7589 | - | |
|
| 0.2753 | 220 | 0.1255 | 0.1982 | 0.7610 | - | |
|
| 0.3004 | 240 | 0.1182 | 0.2328 | 0.7583 | - | |
|
| 0.3254 | 260 | 0.1328 | 0.2218 | 0.7561 | - | |
|
| 0.3504 | 280 | 0.1228 | 0.4583 | 0.7343 | - | |
|
| 0.3755 | 300 | 0.1394 | 0.1785 | 0.7705 | - | |
|
| 0.4005 | 320 | 0.2577 | 0.1800 | 0.7650 | - | |
|
| 0.4255 | 340 | 0.1903 | 0.2680 | 0.7557 | - | |
|
| 0.4506 | 360 | 0.1164 | 0.1761 | 0.7616 | - | |
|
| 0.4756 | 380 | 0.0779 | 0.3318 | 0.7453 | - | |
|
| 0.5006 | 400 | 0.1563 | 0.2209 | 0.7582 | - | |
|
| 0.5257 | 420 | 0.1835 | 0.1683 | 0.7662 | - | |
|
| 0.5507 | 440 | 0.1171 | 0.1537 | 0.7658 | - | |
|
| 0.5757 | 460 | 0.0973 | 0.1381 | 0.7710 | - | |
|
| 0.6008 | 480 | 0.0578 | 0.2303 | 0.7618 | - | |
|
| 0.6258 | 500 | 0.1343 | 0.1431 | 0.7710 | - | |
|
| 0.6508 | 520 | 0.1274 | 0.1646 | 0.7695 | - | |
|
| 0.6758 | 540 | 0.057 | 0.1775 | 0.7606 | - | |
|
| 0.7009 | 560 | 0.0392 | 0.1425 | 0.7689 | - | |
|
| 0.7259 | 580 | 0.0434 | 0.1399 | 0.7712 | - | |
|
| 0.7509 | 600 | 0.1311 | 0.1747 | 0.7670 | - | |
|
| 0.7760 | 620 | 0.0475 | 0.1375 | 0.7709 | - | |
|
| 0.8010 | 640 | 0.0183 | 0.1465 | 0.7685 | - | |
|
| 0.8260 | 660 | 0.024 | 0.1666 | 0.7669 | - | |
|
| 0.8511 | 680 | 0.0249 | 0.1728 | 0.7656 | - | |
|
| 0.8761 | 700 | 0.041 | 0.1624 | 0.7711 | - | |
|
| 0.9011 | 720 | 0.0835 | 0.1397 | 0.7716 | - | |
|
| 0.9262 | 740 | 0.0404 | 0.1507 | 0.7693 | - | |
|
| 0.9512 | 760 | 0.0141 | 0.1369 | 0.7723 | - | |
|
| 0.9762 | 780 | 0.0513 | 0.1555 | 0.7687 | - | |
|
| 1.0013 | 800 | 0.0387 | 0.1306 | 0.7717 | - | |
|
| 1.0263 | 820 | 0.0393 | 0.1420 | 0.7707 | - | |
|
| 1.0513 | 840 | 0.0153 | 0.1656 | 0.7700 | - | |
|
| 1.0763 | 860 | 0.0263 | 0.1525 | 0.7694 | - | |
|
| 1.1014 | 880 | 0.0503 | 0.1947 | 0.7638 | - | |
|
| 1.1264 | 900 | 0.0215 | 0.2202 | 0.7615 | - | |
|
| 1.1514 | 920 | 0.0217 | 0.1542 | 0.7696 | - | |
|
| 1.1765 | 940 | 0.007 | 0.1394 | 0.7713 | - | |
|
| 1.2015 | 960 | 0.018 | 0.1573 | 0.7706 | - | |
|
| 1.2265 | 980 | 0.0446 | 0.1504 | 0.7686 | - | |
|
| 1.2516 | 1000 | 0.026 | 0.1573 | 0.7661 | - | |
|
| 1.2766 | 1020 | 0.0098 | 0.1429 | 0.7683 | - | |
|
| 1.3016 | 1040 | 0.0196 | 0.1374 | 0.7702 | - | |
|
| 1.3267 | 1060 | 0.021 | 0.1594 | 0.7685 | - | |
|
| 1.3517 | 1080 | 0.0499 | 0.1378 | 0.7724 | - | |
|
| 1.3767 | 1100 | 0.0165 | 0.1335 | 0.7729 | - | |
|
| 1.4018 | 1120 | 0.0294 | 0.1451 | 0.7713 | - | |
|
| 1.4268 | 1140 | 0.0114 | 0.1338 | 0.7717 | - | |
|
| 1.4518 | 1160 | 0.0192 | 0.1327 | 0.7719 | - | |
|
| 1.4768 | 1180 | 0.0335 | 0.1618 | 0.7646 | - | |
|
| 1.5019 | 1200 | 0.0546 | 0.1389 | 0.7711 | - | |
|
| 1.5269 | 1220 | 0.0069 | 0.1239 | 0.7738 | - | |
|
| 1.5519 | 1240 | 0.0094 | 0.1180 | 0.7739 | - | |
|
| 1.5770 | 1260 | 0.0074 | 0.1238 | 0.7733 | - | |
|
| 1.6020 | 1280 | 0.0557 | 0.1428 | 0.7720 | - | |
|
| 1.6270 | 1300 | 0.056 | 0.1159 | 0.7751 | - | |
|
| 1.6521 | 1320 | 0.0 | 0.1244 | 0.7758 | - | |
|
| 1.6771 | 1340 | 0.0066 | 0.1185 | 0.7735 | - | |
|
| 1.7021 | 1360 | 0.0178 | 0.1016 | 0.7757 | - | |
|
| 1.7272 | 1380 | 0.0156 | 0.0939 | 0.7776 | - | |
|
| 1.7522 | 1400 | 0.0 | 0.1138 | 0.7761 | - | |
|
| 1.7772 | 1420 | 0.0436 | 0.0980 | 0.7775 | - | |
|
| 1.8023 | 1440 | 0.0626 | 0.1096 | 0.7763 | - | |
|
| 1.8273 | 1460 | 0.0222 | 0.0968 | 0.7774 | - | |
|
| 1.8523 | 1480 | 0.0101 | 0.1021 | 0.7762 | - | |
|
| 1.8773 | 1500 | 0.0171 | 0.1076 | 0.7754 | - | |
|
| 1.9024 | 1520 | 0.0064 | 0.1279 | 0.7730 | - | |
|
| 1.9274 | 1540 | 0.0068 | 0.1237 | 0.7729 | - | |
|
| 1.9524 | 1560 | 0.0066 | 0.1229 | 0.7733 | - | |
|
| 1.9775 | 1580 | 0.0 | 0.1263 | 0.7731 | - | |
|
| 2.0025 | 1600 | 0.0065 | 0.1152 | 0.7746 | - | |
|
| 2.0275 | 1620 | 0.0147 | 0.1021 | 0.7773 | - | |
|
| 2.0526 | 1640 | 0.0 | 0.1021 | 0.7773 | - | |
|
| 2.0776 | 1660 | 0.0209 | 0.1017 | 0.7774 | - | |
|
| 2.1026 | 1680 | 0.0 | 0.0993 | 0.7773 | - | |
|
| 2.1277 | 1700 | 0.0067 | 0.0922 | 0.7784 | - | |
|
| 2.1527 | 1720 | 0.0333 | 0.1158 | 0.7749 | - | |
|
| 2.1777 | 1740 | 0.0 | 0.1397 | 0.7721 | - | |
|
| 2.2028 | 1760 | 0.0158 | 0.1248 | 0.7751 | - | |
|
| 2.2278 | 1780 | 0.0201 | 0.1021 | 0.7767 | - | |
|
| 2.2528 | 1800 | 0.0 | 0.1029 | 0.7768 | - | |
|
| 2.2778 | 1820 | 0.0107 | 0.1007 | 0.7767 | - | |
|
| 2.3029 | 1840 | 0.0156 | 0.0923 | 0.7767 | - | |
|
| 2.3279 | 1860 | 0.0 | 0.1012 | 0.7754 | - | |
|
| 2.3529 | 1880 | 0.0131 | 0.1184 | 0.7731 | - | |
|
| 2.3780 | 1900 | 0.0072 | 0.1113 | 0.7752 | - | |
|
| 2.4030 | 1920 | 0.0337 | 0.0952 | 0.7775 | - | |
|
| 2.4280 | 1940 | 0.0068 | 0.1086 | 0.7754 | - | |
|
| 2.4531 | 1960 | 0.0 | 0.1194 | 0.7740 | - | |
|
| 2.4781 | 1980 | 0.0176 | 0.1184 | 0.7747 | - | |
|
| 2.5031 | 2000 | 0.0188 | 0.1123 | 0.7745 | - | |
|
| 2.5282 | 2020 | 0.0 | 0.1138 | 0.7742 | - | |
|
| 2.5532 | 2040 | 0.0 | 0.1141 | 0.7742 | - | |
|
| 2.5782 | 2060 | 0.0269 | 0.1126 | 0.7743 | - | |
|
| 2.6033 | 2080 | 0.0193 | 0.1470 | 0.7707 | - | |
|
| 2.6283 | 2100 | 0.0074 | 0.1333 | 0.7726 | - | |
|
| 2.6533 | 2120 | 0.0253 | 0.1004 | 0.7756 | - | |
|
| 2.6783 | 2140 | 0.0 | 0.0980 | 0.7758 | - | |
|
| 2.7034 | 2160 | 0.0 | 0.0984 | 0.7758 | - | |
|
| 2.7284 | 2180 | 0.0 | 0.0984 | 0.7758 | - | |
|
| 2.7534 | 2200 | 0.0 | 0.0984 | 0.7758 | - | |
|
| 2.7785 | 2220 | 0.007 | 0.0971 | 0.7766 | - | |
|
| 2.8035 | 2240 | 0.0 | 0.0998 | 0.7766 | - | |
|
| 2.8285 | 2260 | 0.015 | 0.0988 | 0.7760 | - | |
|
| 2.8536 | 2280 | 0.0 | 0.1020 | 0.7757 | - | |
|
| 2.8786 | 2300 | 0.0 | 0.1023 | 0.7756 | - | |
|
| 2.9036 | 2320 | 0.0 | 0.1023 | 0.7756 | - | |
|
| 2.9287 | 2340 | 0.0 | 0.1023 | 0.7756 | - | |
|
| 2.9537 | 2360 | 0.0075 | 0.1043 | 0.7751 | - | |
|
| 2.9787 | 2380 | 0.0067 | 0.1125 | 0.7749 | - | |
|
| 3.0038 | 2400 | 0.0 | 0.1083 | 0.7752 | - | |
|
| 3.0288 | 2420 | 0.0 | 0.1083 | 0.7752 | - | |
|
| 3.0538 | 2440 | 0.0 | 0.1083 | 0.7752 | - | |
|
| 3.0788 | 2460 | 0.0063 | 0.1018 | 0.7755 | - | |
|
| 3.1039 | 2480 | 0.0 | 0.1012 | 0.7756 | - | |
|
| **3.1289** | **2500** | **0.0162** | **0.092** | **0.7768** | **-** | |
|
| 3.1539 | 2520 | 0.01 | 0.0941 | 0.7768 | - | |
|
| 3.1790 | 2540 | 0.0069 | 0.0946 | 0.7761 | - | |
|
| 3.2040 | 2560 | 0.0 | 0.0956 | 0.7759 | - | |
|
| 3.2290 | 2580 | 0.0 | 0.0956 | 0.7758 | - | |
|
| 3.2541 | 2600 | 0.0 | 0.0956 | 0.7758 | - | |
|
| 3.2791 | 2620 | 0.0 | 0.0956 | 0.7758 | - | |
|
| 3.3041 | 2640 | 0.0131 | 0.0981 | 0.7756 | - | |
|
| 3.3292 | 2660 | 0.0195 | 0.1142 | 0.7748 | - | |
|
| 3.3542 | 2680 | 0.0 | 0.1172 | 0.7746 | - | |
|
| 3.3792 | 2700 | 0.0065 | 0.1186 | 0.7748 | - | |
|
| 3.4043 | 2720 | 0.0169 | 0.1184 | 0.7750 | - | |
|
| 3.4293 | 2740 | 0.0 | 0.1175 | 0.7749 | - | |
|
| 3.4543 | 2760 | 0.0 | 0.1165 | 0.7748 | - | |
|
| 3.4793 | 2780 | 0.0105 | 0.1173 | 0.7747 | - | |
|
| 3.5044 | 2800 | 0.0066 | 0.1123 | 0.7751 | - | |
|
| 3.5294 | 2820 | 0.0 | 0.1103 | 0.7753 | - | |
|
| 3.5544 | 2840 | 0.0 | 0.1106 | 0.7753 | - | |
|
| 3.5795 | 2860 | 0.0139 | 0.1158 | 0.7745 | - | |
|
| 3.6045 | 2880 | 0.0 | 0.1183 | 0.7741 | - | |
|
| 3.6295 | 2900 | 0.0 | 0.1181 | 0.7741 | - | |
|
| 3.6546 | 2920 | 0.0 | 0.1179 | 0.7741 | - | |
|
| 3.6796 | 2940 | 0.0 | 0.1179 | 0.7741 | - | |
|
| 3.7046 | 2960 | 0.0119 | 0.1172 | 0.7742 | - | |
|
| 3.7297 | 2980 | 0.0068 | 0.1183 | 0.7742 | - | |
|
| 3.7547 | 3000 | 0.0 | 0.1193 | 0.7741 | - | |
|
| 3.7797 | 3020 | 0.0 | 0.1193 | 0.7741 | - | |
|
| 3.8048 | 3040 | 0.0 | 0.1193 | 0.7741 | - | |
|
| 3.8298 | 3060 | 0.0 | 0.1191 | 0.7741 | - | |
|
| 3.8548 | 3080 | 0.0 | 0.1193 | 0.7741 | - | |
|
| 3.8798 | 3100 | 0.0 | 0.1193 | 0.7741 | - | |
|
| 3.9049 | 3120 | 0.0131 | 0.1165 | 0.7745 | - | |
|
| 3.9299 | 3140 | 0.0 | 0.1159 | 0.7745 | - | |
|
| 3.9549 | 3160 | 0.0 | 0.1158 | 0.7746 | - | |
|
| 3.9800 | 3180 | 0.0 | 0.1153 | 0.7746 | - | |
|
| -1 | -1 | - | - | - | 0.7768 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.4.0 |
|
- Transformers: 4.48.1 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.3.0 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |