File size: 43,750 Bytes
3e7aa22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:25551
- loss:OnlineContrastiveLoss
base_model: sentence-transformers/paraphrase-MiniLM-L12-v2
widget:
- source_sentence: Berapa gaji ratarata buruhkaryawan di Indonesia lihat dari umur
    dan lapangan pekerjaannya 2019
  sentences:
  - Rasio laju peningkatan konsumsi tanah dengan laju pertumbuhan penduduk
  - Rata-rata UpahGaji Bersih sebulan Buruh/Karyawan Pegawai Menurut Kelompok Umur
    dan lapangan pekerjaan utama, 2019
  - Ringkasan Neraca Arus Dana, Triwulan Pertama, 2005, (Miliar Rupiah)
- source_sentence: Average monthly net wage/salary of employees by age group and type
    of work (Rupiah), 2018
  sentences:
  - Ringkasan Neraca Arus Dana, Triwulan III, 2014**), (Miliar Rupiah)
  - Nilai Produksi dan Biaya Produksi Rumah Tangga Usaha Peternakan Menurut Jenis
    Ternak, 2014
  - Rekapitulasi Laporan Posisi Keuangan Perusahaan Penyelenggara Program Asuransi
    Wajib dan BPJS Per 31 Desember (miliar rupiah) 2000-2021
- source_sentence: jumlah pembangunan fasilitas sekolah baru
  sentences:
  - Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Pendidikan Tertinggi
    yang Ditamatkan dan Lapangan Pekerjaan Utama di 9 Sektor (rupiah), 2017
  - Posisi Kredit Perbankan1dalam Rupiah dan Valuta Asing Menurut Sektor Ekonomi (miliar
    rupiah), 2016-2018
  - Angka Kematian Bayi/AKB (Infant Mortality Rate/IMR) Hasil Long Form SP2020 Menurut
    Provinsi/Kabupaten/Kota, 2020
- source_sentence: Data Pendapatan Rata-rata Orang Yang Berusaha Sendiri Per Provinsi,
    Berdasarkan Lapangan Pekerjaan Utama (2020)
  sentences:
  - Nilai Pendapatan Disposabel Menurut Golongan Rumah Tangga (miliar rupiah), 2000,
    2005, dan 2008
  - IHK dan Rata-rata Upah per Bulan Buruh Pertambangan di Bawah Mandor (Supervisor),
    1996-2014 (1996=100)
  - Ringkasan Neraca Arus Dana Tahun 2004 (Miliar Rupiah)
- source_sentence: Bagaimana perkembangan koperasi di Indonesia, khususnya sekitar
    tayun 2000?
  sentences:
  - Rata-Rata Harian Aliran Sungai, Tinggi Aliran, dan Volume Air di Beberapa Sungai
    yang Daerah Pengalirannya Lebih dari 1.000 km2, 2000-2011
  - Penduduk Berumur 15 Tahun Ke Atas yang Bekerja Selama Seminggu yang Lalu Menurut
    Golongan Umur dan Jumlah Jam Kerja Seluruhnya, 2008 - 2024
  - IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor),
    1996-2014 (1996=100)
datasets:
- yahyaabd/query-hard-pos-neg-doc-pairs-statictable
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L12-v2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: allstats semantic mini v1 eval
      type: allstats-semantic-mini-v1-eval
    metrics:
    - type: pearson_cosine
      value: 0.8479971660039509
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7745638757528484
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: allstat search mini v1 test
      type: allstat-search-mini-v1-test
    metrics:
    - type: pearson_cosine
      value: 0.8538445733470035
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7767623851780713
      name: Spearman Cosine
---

# SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L12-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L12-v2) on the [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L12-v2) <!-- at revision 3f21b01a41e265ecb43cef6afeef20b7e578b637 -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-miniLM-v1")
# Run inference
sentences = [
    'Bagaimana perkembangan koperasi di Indonesia, khususnya sekitar tayun 2000?',
    'IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor), 1996-2014 (1996=100)',
    'Rata-Rata Harian Aliran Sungai, Tinggi Aliran, dan Volume Air di Beberapa Sungai yang Daerah Pengalirannya Lebih dari 1.000 km2, 2000-2011',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Datasets: `allstats-semantic-mini-v1-eval` and `allstat-search-mini-v1-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | allstats-semantic-mini-v1-eval | allstat-search-mini-v1-test |
|:--------------------|:-------------------------------|:----------------------------|
| pearson_cosine      | 0.848                          | 0.8538                      |
| **spearman_cosine** | **0.7746**                     | **0.7768**                  |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### query-hard-pos-neg-doc-pairs-statictable

* Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [25756d3](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/25756d36046bf92b56bce1b450fd080853688667)
* Size: 25,551 training samples
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                             | doc                                                                                | label                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                            | string                                                                             | int                                             |
  | details | <ul><li>min: 9 tokens</li><li>mean: 28.64 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 36.67 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>0: ~65.80%</li><li>1: ~34.20%</li></ul> |
* Samples:
  | query                                                                                                      | doc                                                                        | label          |
  |:-----------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------|:---------------|
  | <code>Gaji nominal, indeks upah: nominal & riil pekerja manufaktur non-mandor (2012=100), 2013-2014</code> | <code>Ringkasan Neraca Arus Dana, Triwulan I, 2007, (Miliar Rupiah)</code> | <code>0</code> |
  | <code>gaji nominal, indeks upah: nominal & riil pekerja manufaktur non-mandor (2012=100), 2013-2014</code> | <code>Ringkasan Neraca Arus Dana, Triwulan I, 2007, (Miliar Rupiah)</code> | <code>0</code> |
  | <code>GAJI NOMINAL, INDEKS UPAH: NOMINAL & RIIL PEKERJA MANUFAKTUR NON-MANDOR (2012=100), 2013-2014</code> | <code>Ringkasan Neraca Arus Dana, Triwulan I, 2007, (Miliar Rupiah)</code> | <code>0</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)

### Evaluation Dataset

#### query-hard-pos-neg-doc-pairs-statictable

* Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [25756d3](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/25756d36046bf92b56bce1b450fd080853688667)
* Size: 5,463 evaluation samples
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                             | doc                                                                               | label                                           |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                            | string                                                                            | int                                             |
  | details | <ul><li>min: 10 tokens</li><li>mean: 29.3 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 37.1 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>0: ~73.20%</li><li>1: ~26.80%</li></ul> |
* Samples:
  | query                                                                                                                         | doc                                                                                                                      | label          |
  |:------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>Bagaimana penghasilan wirausahawan di Indonesia bervariasi per provinsi dan jenis pekerjaan utama di tahun 2016?</code> | <code>Realisasi Penerimaan dan Pengeluaran Pemerintah Desa (Juta Rupiah) di Perkotaan menurut Provinsi, 2000-2012</code> | <code>0</code> |
  | <code>bagaimana penghasilan wirausahawan di indonesia bervariasi per provinsi dan jenis pekerjaan utama di tahun 2016?</code> | <code>Realisasi Penerimaan dan Pengeluaran Pemerintah Desa (Juta Rupiah) di Perkotaan menurut Provinsi, 2000-2012</code> | <code>0</code> |
  | <code>BAGAIMANA PENGHASILAN WIRAUSAHAWAN DI INDONESIA BERVARIASI PER PROVINSI DAN JENIS PEKERJAAN UTAMA DI TAHUN 2016?</code> | <code>Realisasi Penerimaan dan Pengeluaran Pemerintah Desa (Juta Rupiah) di Perkotaan menurut Provinsi, 2000-2012</code> | <code>0</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `eval_on_start`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: True
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch      | Step     | Training Loss | Validation Loss | allstats-semantic-mini-v1-eval_spearman_cosine | allstat-search-mini-v1-test_spearman_cosine |
|:----------:|:--------:|:-------------:|:---------------:|:----------------------------------------------:|:-------------------------------------------:|
| 0          | 0        | -             | 1.0797          | 0.5314                                         | -                                           |
| 0.0250     | 20       | 1.2823        | 0.9331          | 0.5510                                         | -                                           |
| 0.0501     | 40       | 0.9562        | 0.6159          | 0.6492                                         | -                                           |
| 0.0751     | 60       | 0.5872        | 0.4629          | 0.6913                                         | -                                           |
| 0.1001     | 80       | 0.4101        | 0.3605          | 0.7221                                         | -                                           |
| 0.1252     | 100      | 0.419         | 0.3919          | 0.7301                                         | -                                           |
| 0.1502     | 120      | 0.1517        | 0.2565          | 0.7457                                         | -                                           |
| 0.1752     | 140      | 0.2678        | 0.2503          | 0.7484                                         | -                                           |
| 0.2003     | 160      | 0.225         | 0.2010          | 0.7546                                         | -                                           |
| 0.2253     | 180      | 0.2846        | 0.3203          | 0.7420                                         | -                                           |
| 0.2503     | 200      | 0.2086        | 0.1981          | 0.7589                                         | -                                           |
| 0.2753     | 220      | 0.1255        | 0.1982          | 0.7610                                         | -                                           |
| 0.3004     | 240      | 0.1182        | 0.2328          | 0.7583                                         | -                                           |
| 0.3254     | 260      | 0.1328        | 0.2218          | 0.7561                                         | -                                           |
| 0.3504     | 280      | 0.1228        | 0.4583          | 0.7343                                         | -                                           |
| 0.3755     | 300      | 0.1394        | 0.1785          | 0.7705                                         | -                                           |
| 0.4005     | 320      | 0.2577        | 0.1800          | 0.7650                                         | -                                           |
| 0.4255     | 340      | 0.1903        | 0.2680          | 0.7557                                         | -                                           |
| 0.4506     | 360      | 0.1164        | 0.1761          | 0.7616                                         | -                                           |
| 0.4756     | 380      | 0.0779        | 0.3318          | 0.7453                                         | -                                           |
| 0.5006     | 400      | 0.1563        | 0.2209          | 0.7582                                         | -                                           |
| 0.5257     | 420      | 0.1835        | 0.1683          | 0.7662                                         | -                                           |
| 0.5507     | 440      | 0.1171        | 0.1537          | 0.7658                                         | -                                           |
| 0.5757     | 460      | 0.0973        | 0.1381          | 0.7710                                         | -                                           |
| 0.6008     | 480      | 0.0578        | 0.2303          | 0.7618                                         | -                                           |
| 0.6258     | 500      | 0.1343        | 0.1431          | 0.7710                                         | -                                           |
| 0.6508     | 520      | 0.1274        | 0.1646          | 0.7695                                         | -                                           |
| 0.6758     | 540      | 0.057         | 0.1775          | 0.7606                                         | -                                           |
| 0.7009     | 560      | 0.0392        | 0.1425          | 0.7689                                         | -                                           |
| 0.7259     | 580      | 0.0434        | 0.1399          | 0.7712                                         | -                                           |
| 0.7509     | 600      | 0.1311        | 0.1747          | 0.7670                                         | -                                           |
| 0.7760     | 620      | 0.0475        | 0.1375          | 0.7709                                         | -                                           |
| 0.8010     | 640      | 0.0183        | 0.1465          | 0.7685                                         | -                                           |
| 0.8260     | 660      | 0.024         | 0.1666          | 0.7669                                         | -                                           |
| 0.8511     | 680      | 0.0249        | 0.1728          | 0.7656                                         | -                                           |
| 0.8761     | 700      | 0.041         | 0.1624          | 0.7711                                         | -                                           |
| 0.9011     | 720      | 0.0835        | 0.1397          | 0.7716                                         | -                                           |
| 0.9262     | 740      | 0.0404        | 0.1507          | 0.7693                                         | -                                           |
| 0.9512     | 760      | 0.0141        | 0.1369          | 0.7723                                         | -                                           |
| 0.9762     | 780      | 0.0513        | 0.1555          | 0.7687                                         | -                                           |
| 1.0013     | 800      | 0.0387        | 0.1306          | 0.7717                                         | -                                           |
| 1.0263     | 820      | 0.0393        | 0.1420          | 0.7707                                         | -                                           |
| 1.0513     | 840      | 0.0153        | 0.1656          | 0.7700                                         | -                                           |
| 1.0763     | 860      | 0.0263        | 0.1525          | 0.7694                                         | -                                           |
| 1.1014     | 880      | 0.0503        | 0.1947          | 0.7638                                         | -                                           |
| 1.1264     | 900      | 0.0215        | 0.2202          | 0.7615                                         | -                                           |
| 1.1514     | 920      | 0.0217        | 0.1542          | 0.7696                                         | -                                           |
| 1.1765     | 940      | 0.007         | 0.1394          | 0.7713                                         | -                                           |
| 1.2015     | 960      | 0.018         | 0.1573          | 0.7706                                         | -                                           |
| 1.2265     | 980      | 0.0446        | 0.1504          | 0.7686                                         | -                                           |
| 1.2516     | 1000     | 0.026         | 0.1573          | 0.7661                                         | -                                           |
| 1.2766     | 1020     | 0.0098        | 0.1429          | 0.7683                                         | -                                           |
| 1.3016     | 1040     | 0.0196        | 0.1374          | 0.7702                                         | -                                           |
| 1.3267     | 1060     | 0.021         | 0.1594          | 0.7685                                         | -                                           |
| 1.3517     | 1080     | 0.0499        | 0.1378          | 0.7724                                         | -                                           |
| 1.3767     | 1100     | 0.0165        | 0.1335          | 0.7729                                         | -                                           |
| 1.4018     | 1120     | 0.0294        | 0.1451          | 0.7713                                         | -                                           |
| 1.4268     | 1140     | 0.0114        | 0.1338          | 0.7717                                         | -                                           |
| 1.4518     | 1160     | 0.0192        | 0.1327          | 0.7719                                         | -                                           |
| 1.4768     | 1180     | 0.0335        | 0.1618          | 0.7646                                         | -                                           |
| 1.5019     | 1200     | 0.0546        | 0.1389          | 0.7711                                         | -                                           |
| 1.5269     | 1220     | 0.0069        | 0.1239          | 0.7738                                         | -                                           |
| 1.5519     | 1240     | 0.0094        | 0.1180          | 0.7739                                         | -                                           |
| 1.5770     | 1260     | 0.0074        | 0.1238          | 0.7733                                         | -                                           |
| 1.6020     | 1280     | 0.0557        | 0.1428          | 0.7720                                         | -                                           |
| 1.6270     | 1300     | 0.056         | 0.1159          | 0.7751                                         | -                                           |
| 1.6521     | 1320     | 0.0           | 0.1244          | 0.7758                                         | -                                           |
| 1.6771     | 1340     | 0.0066        | 0.1185          | 0.7735                                         | -                                           |
| 1.7021     | 1360     | 0.0178        | 0.1016          | 0.7757                                         | -                                           |
| 1.7272     | 1380     | 0.0156        | 0.0939          | 0.7776                                         | -                                           |
| 1.7522     | 1400     | 0.0           | 0.1138          | 0.7761                                         | -                                           |
| 1.7772     | 1420     | 0.0436        | 0.0980          | 0.7775                                         | -                                           |
| 1.8023     | 1440     | 0.0626        | 0.1096          | 0.7763                                         | -                                           |
| 1.8273     | 1460     | 0.0222        | 0.0968          | 0.7774                                         | -                                           |
| 1.8523     | 1480     | 0.0101        | 0.1021          | 0.7762                                         | -                                           |
| 1.8773     | 1500     | 0.0171        | 0.1076          | 0.7754                                         | -                                           |
| 1.9024     | 1520     | 0.0064        | 0.1279          | 0.7730                                         | -                                           |
| 1.9274     | 1540     | 0.0068        | 0.1237          | 0.7729                                         | -                                           |
| 1.9524     | 1560     | 0.0066        | 0.1229          | 0.7733                                         | -                                           |
| 1.9775     | 1580     | 0.0           | 0.1263          | 0.7731                                         | -                                           |
| 2.0025     | 1600     | 0.0065        | 0.1152          | 0.7746                                         | -                                           |
| 2.0275     | 1620     | 0.0147        | 0.1021          | 0.7773                                         | -                                           |
| 2.0526     | 1640     | 0.0           | 0.1021          | 0.7773                                         | -                                           |
| 2.0776     | 1660     | 0.0209        | 0.1017          | 0.7774                                         | -                                           |
| 2.1026     | 1680     | 0.0           | 0.0993          | 0.7773                                         | -                                           |
| 2.1277     | 1700     | 0.0067        | 0.0922          | 0.7784                                         | -                                           |
| 2.1527     | 1720     | 0.0333        | 0.1158          | 0.7749                                         | -                                           |
| 2.1777     | 1740     | 0.0           | 0.1397          | 0.7721                                         | -                                           |
| 2.2028     | 1760     | 0.0158        | 0.1248          | 0.7751                                         | -                                           |
| 2.2278     | 1780     | 0.0201        | 0.1021          | 0.7767                                         | -                                           |
| 2.2528     | 1800     | 0.0           | 0.1029          | 0.7768                                         | -                                           |
| 2.2778     | 1820     | 0.0107        | 0.1007          | 0.7767                                         | -                                           |
| 2.3029     | 1840     | 0.0156        | 0.0923          | 0.7767                                         | -                                           |
| 2.3279     | 1860     | 0.0           | 0.1012          | 0.7754                                         | -                                           |
| 2.3529     | 1880     | 0.0131        | 0.1184          | 0.7731                                         | -                                           |
| 2.3780     | 1900     | 0.0072        | 0.1113          | 0.7752                                         | -                                           |
| 2.4030     | 1920     | 0.0337        | 0.0952          | 0.7775                                         | -                                           |
| 2.4280     | 1940     | 0.0068        | 0.1086          | 0.7754                                         | -                                           |
| 2.4531     | 1960     | 0.0           | 0.1194          | 0.7740                                         | -                                           |
| 2.4781     | 1980     | 0.0176        | 0.1184          | 0.7747                                         | -                                           |
| 2.5031     | 2000     | 0.0188        | 0.1123          | 0.7745                                         | -                                           |
| 2.5282     | 2020     | 0.0           | 0.1138          | 0.7742                                         | -                                           |
| 2.5532     | 2040     | 0.0           | 0.1141          | 0.7742                                         | -                                           |
| 2.5782     | 2060     | 0.0269        | 0.1126          | 0.7743                                         | -                                           |
| 2.6033     | 2080     | 0.0193        | 0.1470          | 0.7707                                         | -                                           |
| 2.6283     | 2100     | 0.0074        | 0.1333          | 0.7726                                         | -                                           |
| 2.6533     | 2120     | 0.0253        | 0.1004          | 0.7756                                         | -                                           |
| 2.6783     | 2140     | 0.0           | 0.0980          | 0.7758                                         | -                                           |
| 2.7034     | 2160     | 0.0           | 0.0984          | 0.7758                                         | -                                           |
| 2.7284     | 2180     | 0.0           | 0.0984          | 0.7758                                         | -                                           |
| 2.7534     | 2200     | 0.0           | 0.0984          | 0.7758                                         | -                                           |
| 2.7785     | 2220     | 0.007         | 0.0971          | 0.7766                                         | -                                           |
| 2.8035     | 2240     | 0.0           | 0.0998          | 0.7766                                         | -                                           |
| 2.8285     | 2260     | 0.015         | 0.0988          | 0.7760                                         | -                                           |
| 2.8536     | 2280     | 0.0           | 0.1020          | 0.7757                                         | -                                           |
| 2.8786     | 2300     | 0.0           | 0.1023          | 0.7756                                         | -                                           |
| 2.9036     | 2320     | 0.0           | 0.1023          | 0.7756                                         | -                                           |
| 2.9287     | 2340     | 0.0           | 0.1023          | 0.7756                                         | -                                           |
| 2.9537     | 2360     | 0.0075        | 0.1043          | 0.7751                                         | -                                           |
| 2.9787     | 2380     | 0.0067        | 0.1125          | 0.7749                                         | -                                           |
| 3.0038     | 2400     | 0.0           | 0.1083          | 0.7752                                         | -                                           |
| 3.0288     | 2420     | 0.0           | 0.1083          | 0.7752                                         | -                                           |
| 3.0538     | 2440     | 0.0           | 0.1083          | 0.7752                                         | -                                           |
| 3.0788     | 2460     | 0.0063        | 0.1018          | 0.7755                                         | -                                           |
| 3.1039     | 2480     | 0.0           | 0.1012          | 0.7756                                         | -                                           |
| **3.1289** | **2500** | **0.0162**    | **0.092**       | **0.7768**                                     | **-**                                       |
| 3.1539     | 2520     | 0.01          | 0.0941          | 0.7768                                         | -                                           |
| 3.1790     | 2540     | 0.0069        | 0.0946          | 0.7761                                         | -                                           |
| 3.2040     | 2560     | 0.0           | 0.0956          | 0.7759                                         | -                                           |
| 3.2290     | 2580     | 0.0           | 0.0956          | 0.7758                                         | -                                           |
| 3.2541     | 2600     | 0.0           | 0.0956          | 0.7758                                         | -                                           |
| 3.2791     | 2620     | 0.0           | 0.0956          | 0.7758                                         | -                                           |
| 3.3041     | 2640     | 0.0131        | 0.0981          | 0.7756                                         | -                                           |
| 3.3292     | 2660     | 0.0195        | 0.1142          | 0.7748                                         | -                                           |
| 3.3542     | 2680     | 0.0           | 0.1172          | 0.7746                                         | -                                           |
| 3.3792     | 2700     | 0.0065        | 0.1186          | 0.7748                                         | -                                           |
| 3.4043     | 2720     | 0.0169        | 0.1184          | 0.7750                                         | -                                           |
| 3.4293     | 2740     | 0.0           | 0.1175          | 0.7749                                         | -                                           |
| 3.4543     | 2760     | 0.0           | 0.1165          | 0.7748                                         | -                                           |
| 3.4793     | 2780     | 0.0105        | 0.1173          | 0.7747                                         | -                                           |
| 3.5044     | 2800     | 0.0066        | 0.1123          | 0.7751                                         | -                                           |
| 3.5294     | 2820     | 0.0           | 0.1103          | 0.7753                                         | -                                           |
| 3.5544     | 2840     | 0.0           | 0.1106          | 0.7753                                         | -                                           |
| 3.5795     | 2860     | 0.0139        | 0.1158          | 0.7745                                         | -                                           |
| 3.6045     | 2880     | 0.0           | 0.1183          | 0.7741                                         | -                                           |
| 3.6295     | 2900     | 0.0           | 0.1181          | 0.7741                                         | -                                           |
| 3.6546     | 2920     | 0.0           | 0.1179          | 0.7741                                         | -                                           |
| 3.6796     | 2940     | 0.0           | 0.1179          | 0.7741                                         | -                                           |
| 3.7046     | 2960     | 0.0119        | 0.1172          | 0.7742                                         | -                                           |
| 3.7297     | 2980     | 0.0068        | 0.1183          | 0.7742                                         | -                                           |
| 3.7547     | 3000     | 0.0           | 0.1193          | 0.7741                                         | -                                           |
| 3.7797     | 3020     | 0.0           | 0.1193          | 0.7741                                         | -                                           |
| 3.8048     | 3040     | 0.0           | 0.1193          | 0.7741                                         | -                                           |
| 3.8298     | 3060     | 0.0           | 0.1191          | 0.7741                                         | -                                           |
| 3.8548     | 3080     | 0.0           | 0.1193          | 0.7741                                         | -                                           |
| 3.8798     | 3100     | 0.0           | 0.1193          | 0.7741                                         | -                                           |
| 3.9049     | 3120     | 0.0131        | 0.1165          | 0.7745                                         | -                                           |
| 3.9299     | 3140     | 0.0           | 0.1159          | 0.7745                                         | -                                           |
| 3.9549     | 3160     | 0.0           | 0.1158          | 0.7746                                         | -                                           |
| 3.9800     | 3180     | 0.0           | 0.1153          | 0.7746                                         | -                                           |
| -1         | -1       | -             | -               | -                                              | 0.7768                                      |

* The bold row denotes the saved checkpoint.
</details>

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->