metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:212940
- loss:CosineSimilarityLoss
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
widget:
- source_sentence: Ringkasan data strategis BPS 2012
sentences:
- >-
Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut
Provinsi dan Jenis Pekerjaan Utama, 2021
- Laporan Perekonomian Indonesia 2007
- Statistik Potensi Desa Provinsi Banten 2008
- source_sentence: tahun berapa ekspor naik 2,37% dan impor naik 30,30%?
sentences:
- Bulan November 2006 Ekspor Naik 2,37 % dan Impor Naik 30,30 %
- Indeks Harga Konsumen per Kelompok di 82 Kota <sup>1</sup> (2012=100)
- >-
Februari 2022: Tingkat Pengangguran Terbuka (TPT) sebesar 5,83 persen
dan Rata-rata upah buruh sebesar 2,89 juta rupiah per bulan
- source_sentence: akses air bersih di indonesia (2005-2009)
sentences:
- Desember 2016, Rupiah Terapresiasi 0,74 Persen Terhadap Dolar Amerika
- Statistik Air Bersih 2005-2009
- >-
Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut
Pendidikan Tertinggi yang Ditamatkan dan Lapangan Pekerjaan Utama di 17
Sektor (rupiah), 2018
- source_sentence: >-
Tinjauan Regional Berdasarkan PDRB Kabupaten/Kota 2014-2018, Buku 2 Pulau
Jawa dan Bali
sentences:
- Profil Migran Hasil Susenas 2011-2012
- Statistik Gas Kota 2004-2008
- >-
Jumlah kunjungan wisman ke Indonesia melalui pintu masuk utama pada Juni
2022 mencapai 345,44 ribu kunjungan dan Jumlah penumpang angkutan udara
internasional pada Juni 2022 naik 23,28 persen
- source_sentence: perubahan nilai tukar petani bulan mei 2017
sentences:
- Perkembangan Nilai Tukar Petani Mei 2017
- NTP Naik 0,15%, Harga Gabah Kualitas GKG Naik 0,98%
- Statistik Restoran/Rumah Makan Tahun 2014
datasets:
- yahyaabd/allstats-semantic-search-synthetic-dataset-v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: >-
SentenceTransformer based on
sentence-transformers/paraphrase-multilingual-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstats semantic search v1 3 dev
type: allstats-semantic-search-v1-3-dev
metrics:
- type: pearson_cosine
value: 0.9955935469233214
name: Pearson Cosine
- type: spearman_cosine
value: 0.9588270212992008
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstat semantic search v1 3 test
type: allstat-semantic-search-v1-3-test
metrics:
- type: pearson_cosine
value: 0.9955194411367296
name: Pearson Cosine
- type: spearman_cosine
value: 0.958337873285875
name: Spearman Cosine
SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2 on the allstats-semantic-search-synthetic-dataset-v1 dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-semantic-search-model-v1-3")
# Run inference
sentences = [
'perubahan nilai tukar petani bulan mei 2017',
'Perkembangan Nilai Tukar Petani Mei 2017',
'Statistik Restoran/Rumah Makan Tahun 2014',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
allstats-semantic-search-v1-3-dev
andallstat-semantic-search-v1-3-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | allstats-semantic-search-v1-3-dev | allstat-semantic-search-v1-3-test |
---|---|---|
pearson_cosine | 0.9956 | 0.9955 |
spearman_cosine | 0.9588 | 0.9583 |
Training Details
Training Dataset
allstats-semantic-search-synthetic-dataset-v1
- Dataset: allstats-semantic-search-synthetic-dataset-v1 at b13c0a7
- Size: 212,940 training samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 5 tokens
- mean: 11.46 tokens
- max: 34 tokens
- min: 5 tokens
- mean: 14.47 tokens
- max: 54 tokens
- min: 0.0
- mean: 0.5
- max: 1.05
- Samples:
query doc label aDta industri besar dan sedang Indonesia 2008
Statistik Industri Besar dan Sedang Indonesia 2008
0.9
profil bisnis konstruksi individu jawa barat 2022
Statistik Industri Manufaktur Indonesia 2015 - Bahan Baku
0.15
data statistik ekonomi indonesia
Nilai Tukar Valuta Asing di Indonesia 2014
0.08
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
allstats-semantic-search-synthetic-dataset-v1
- Dataset: allstats-semantic-search-synthetic-dataset-v1 at b13c0a7
- Size: 26,618 evaluation samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 5 tokens
- mean: 11.38 tokens
- max: 34 tokens
- min: 4 tokens
- mean: 14.63 tokens
- max: 55 tokens
- min: 0.0
- mean: 0.51
- max: 1.0
- Samples:
query doc label tahun berapa ekspor naik 2,37% dan impor naik 30,30%?
Bulan November 2006 Ekspor Naik 2,37 % dan Impor Naik 30,30 %
1.0
Berapa produksi padi pada tahun 2023?
Produksi padi tahun lainnya
0.0
data statistik solus per aqua 2015
Statistik Solus Per Aqua (SPA) 2015
0.97
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 12warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 12max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | allstats-semantic-search-v1-3-dev_spearman_cosine | allstat-semantic-search-v1-3-test_spearman_cosine |
---|---|---|---|---|---|
0.0751 | 500 | 0.0653 | 0.0400 | 0.7035 | - |
0.1503 | 1000 | 0.0361 | 0.0296 | 0.7310 | - |
0.2254 | 1500 | 0.0278 | 0.0226 | 0.7669 | - |
0.3005 | 2000 | 0.0226 | 0.0195 | 0.7748 | - |
0.3757 | 2500 | 0.0208 | 0.0183 | 0.7769 | - |
0.4508 | 3000 | 0.0184 | 0.0172 | 0.7994 | - |
0.5259 | 3500 | 0.0179 | 0.0159 | 0.7931 | - |
0.6011 | 4000 | 0.0159 | 0.0155 | 0.7966 | - |
0.6762 | 4500 | 0.0161 | 0.0150 | 0.8047 | - |
0.7513 | 5000 | 0.0163 | 0.0153 | 0.7910 | - |
0.8264 | 5500 | 0.0158 | 0.0155 | 0.7956 | - |
0.9016 | 6000 | 0.0149 | 0.0141 | 0.8148 | - |
0.9767 | 6500 | 0.0149 | 0.0145 | 0.8287 | - |
1.0518 | 7000 | 0.0148 | 0.0150 | 0.7933 | - |
1.1270 | 7500 | 0.0131 | 0.0136 | 0.8083 | - |
1.2021 | 8000 | 0.0124 | 0.0131 | 0.8173 | - |
1.2772 | 8500 | 0.0133 | 0.0130 | 0.8117 | - |
1.3524 | 9000 | 0.012 | 0.0126 | 0.8259 | - |
1.4275 | 9500 | 0.0119 | 0.0120 | 0.8178 | - |
1.5026 | 10000 | 0.0116 | 0.0118 | 0.8332 | - |
1.5778 | 10500 | 0.0132 | 0.0123 | 0.8108 | - |
1.6529 | 11000 | 0.0114 | 0.0111 | 0.8365 | - |
1.7280 | 11500 | 0.0105 | 0.0109 | 0.8235 | - |
1.8032 | 12000 | 0.0107 | 0.0105 | 0.8445 | - |
1.8783 | 12500 | 0.0106 | 0.0101 | 0.8330 | - |
1.9534 | 13000 | 0.0095 | 0.0096 | 0.8437 | - |
2.0285 | 13500 | 0.0093 | 0.0094 | 0.8417 | - |
2.1037 | 14000 | 0.0079 | 0.0093 | 0.8485 | - |
2.1788 | 14500 | 0.008 | 0.0089 | 0.8422 | - |
2.2539 | 15000 | 0.0081 | 0.0086 | 0.8485 | - |
2.3291 | 15500 | 0.008 | 0.0084 | 0.8530 | - |
2.4042 | 16000 | 0.007 | 0.0084 | 0.8597 | - |
2.4793 | 16500 | 0.0081 | 0.0087 | 0.8499 | - |
2.5545 | 17000 | 0.0078 | 0.0078 | 0.8577 | - |
2.6296 | 17500 | 0.007 | 0.0080 | 0.8559 | - |
2.7047 | 18000 | 0.0072 | 0.0078 | 0.8569 | - |
2.7799 | 18500 | 0.0069 | 0.0079 | 0.8579 | - |
2.8550 | 19000 | 0.0064 | 0.0072 | 0.8693 | - |
2.9301 | 19500 | 0.0064 | 0.0070 | 0.8747 | - |
3.0053 | 20000 | 0.0061 | 0.0068 | 0.8757 | - |
3.0804 | 20500 | 0.0052 | 0.0069 | 0.8727 | - |
3.1555 | 21000 | 0.005 | 0.0067 | 0.8734 | - |
3.2307 | 21500 | 0.0054 | 0.0065 | 0.8727 | - |
3.3058 | 22000 | 0.0058 | 0.0070 | 0.8715 | - |
3.3809 | 22500 | 0.0056 | 0.0066 | 0.8724 | - |
3.4560 | 23000 | 0.0056 | 0.0070 | 0.8740 | - |
3.5312 | 23500 | 0.0054 | 0.0060 | 0.8775 | - |
3.6063 | 24000 | 0.0051 | 0.0062 | 0.8746 | - |
3.6814 | 24500 | 0.0047 | 0.0060 | 0.8765 | - |
3.7566 | 25000 | 0.0051 | 0.0067 | 0.8783 | - |
3.8317 | 25500 | 0.0048 | 0.0058 | 0.8824 | - |
3.9068 | 26000 | 0.0048 | 0.0059 | 0.8862 | - |
3.9820 | 26500 | 0.005 | 0.0056 | 0.8853 | - |
4.0571 | 27000 | 0.0042 | 0.0053 | 0.8868 | - |
4.1322 | 27500 | 0.0036 | 0.0056 | 0.8893 | - |
4.2074 | 28000 | 0.0041 | 0.0052 | 0.8954 | - |
4.2825 | 28500 | 0.0041 | 0.0050 | 0.8943 | - |
4.3576 | 29000 | 0.0036 | 0.0050 | 0.8890 | - |
4.4328 | 29500 | 0.0036 | 0.0046 | 0.8990 | - |
4.5079 | 30000 | 0.0038 | 0.0051 | 0.8934 | - |
4.5830 | 30500 | 0.0037 | 0.0049 | 0.9011 | - |
4.6582 | 31000 | 0.0036 | 0.0049 | 0.9000 | - |
4.7333 | 31500 | 0.0041 | 0.0052 | 0.8938 | - |
4.8084 | 32000 | 0.004 | 0.0049 | 0.8971 | - |
4.8835 | 32500 | 0.0038 | 0.0043 | 0.9023 | - |
4.9587 | 33000 | 0.0036 | 0.0044 | 0.9006 | - |
5.0338 | 33500 | 0.0032 | 0.0043 | 0.9042 | - |
5.1089 | 34000 | 0.0031 | 0.0042 | 0.9054 | - |
5.1841 | 34500 | 0.0028 | 0.0042 | 0.9052 | - |
5.2592 | 35000 | 0.0028 | 0.0043 | 0.9065 | - |
5.3343 | 35500 | 0.003 | 0.0041 | 0.9093 | - |
5.4095 | 36000 | 0.0029 | 0.0042 | 0.9084 | - |
5.4846 | 36500 | 0.0029 | 0.0044 | 0.9078 | - |
5.5597 | 37000 | 0.0027 | 0.0043 | 0.9062 | - |
5.6349 | 37500 | 0.003 | 0.0039 | 0.9101 | - |
5.7100 | 38000 | 0.0027 | 0.0041 | 0.9092 | - |
5.7851 | 38500 | 0.0025 | 0.0039 | 0.9140 | - |
5.8603 | 39000 | 0.0027 | 0.0037 | 0.9138 | - |
5.9354 | 39500 | 0.0027 | 0.0037 | 0.9137 | - |
6.0105 | 40000 | 0.0027 | 0.0036 | 0.9162 | - |
6.0856 | 40500 | 0.002 | 0.0035 | 0.9209 | - |
6.1608 | 41000 | 0.0021 | 0.0037 | 0.9180 | - |
6.2359 | 41500 | 0.0023 | 0.0036 | 0.9183 | - |
6.3110 | 42000 | 0.0024 | 0.0035 | 0.9218 | - |
6.3862 | 42500 | 0.002 | 0.0033 | 0.9216 | - |
6.4613 | 43000 | 0.0024 | 0.0035 | 0.9220 | - |
6.5364 | 43500 | 0.0018 | 0.0034 | 0.9232 | - |
6.6116 | 44000 | 0.0021 | 0.0033 | 0.9236 | - |
6.6867 | 44500 | 0.0021 | 0.0035 | 0.9225 | - |
6.7618 | 45000 | 0.0027 | 0.0031 | 0.9227 | - |
6.8370 | 45500 | 0.0019 | 0.0032 | 0.9242 | - |
6.9121 | 46000 | 0.0022 | 0.0033 | 0.9224 | - |
6.9872 | 46500 | 0.0022 | 0.0030 | 0.9252 | - |
7.0624 | 47000 | 0.0017 | 0.0029 | 0.9294 | - |
7.1375 | 47500 | 0.0014 | 0.0028 | 0.9304 | - |
7.2126 | 48000 | 0.0015 | 0.0028 | 0.9324 | - |
7.2878 | 48500 | 0.0014 | 0.0030 | 0.9313 | - |
7.3629 | 49000 | 0.0015 | 0.0029 | 0.9333 | - |
7.4380 | 49500 | 0.0015 | 0.0028 | 0.9342 | - |
7.5131 | 50000 | 0.0018 | 0.0030 | 0.9261 | - |
7.5883 | 50500 | 0.0016 | 0.0030 | 0.9329 | - |
7.6634 | 51000 | 0.0019 | 0.0026 | 0.9334 | - |
7.7385 | 51500 | 0.0018 | 0.0029 | 0.9336 | - |
7.8137 | 52000 | 0.0016 | 0.0026 | 0.9353 | - |
7.8888 | 52500 | 0.0016 | 0.0026 | 0.9351 | - |
7.9639 | 53000 | 0.0017 | 0.0024 | 0.9356 | - |
8.0391 | 53500 | 0.0013 | 0.0023 | 0.9396 | - |
8.1142 | 54000 | 0.0012 | 0.0024 | 0.9390 | - |
8.1893 | 54500 | 0.001 | 0.0024 | 0.9421 | - |
8.2645 | 55000 | 0.0012 | 0.0024 | 0.9406 | - |
8.3396 | 55500 | 0.0012 | 0.0023 | 0.9407 | - |
8.4147 | 56000 | 0.0012 | 0.0024 | 0.9398 | - |
8.4899 | 56500 | 0.0012 | 0.0024 | 0.9412 | - |
8.5650 | 57000 | 0.0014 | 0.0024 | 0.9397 | - |
8.6401 | 57500 | 0.0013 | 0.0023 | 0.9411 | - |
8.7153 | 58000 | 0.0013 | 0.0023 | 0.9418 | - |
8.7904 | 58500 | 0.0014 | 0.0022 | 0.9432 | - |
8.8655 | 59000 | 0.0011 | 0.0022 | 0.9448 | - |
8.9406 | 59500 | 0.0012 | 0.0022 | 0.9455 | - |
9.0158 | 60000 | 0.0012 | 0.0021 | 0.9453 | - |
9.0909 | 60500 | 0.0009 | 0.0021 | 0.9461 | - |
9.1660 | 61000 | 0.0009 | 0.0021 | 0.9465 | - |
9.2412 | 61500 | 0.0009 | 0.0021 | 0.9471 | - |
9.3163 | 62000 | 0.0009 | 0.0021 | 0.9477 | - |
9.3914 | 62500 | 0.0008 | 0.0020 | 0.9482 | - |
9.4666 | 63000 | 0.0012 | 0.0020 | 0.9478 | - |
9.5417 | 63500 | 0.0009 | 0.0020 | 0.9479 | - |
9.6168 | 64000 | 0.0009 | 0.0020 | 0.9485 | - |
9.6920 | 64500 | 0.0011 | 0.0020 | 0.9492 | - |
9.7671 | 65000 | 0.0008 | 0.0019 | 0.9497 | - |
9.8422 | 65500 | 0.001 | 0.0019 | 0.9504 | - |
9.9174 | 66000 | 0.0009 | 0.0019 | 0.9518 | - |
9.9925 | 66500 | 0.0009 | 0.0019 | 0.9510 | - |
10.0676 | 67000 | 0.0008 | 0.0018 | 0.9517 | - |
10.1427 | 67500 | 0.0007 | 0.0018 | 0.9524 | - |
10.2179 | 68000 | 0.0007 | 0.0018 | 0.9521 | - |
10.2930 | 68500 | 0.0008 | 0.0019 | 0.9526 | - |
10.3681 | 69000 | 0.0007 | 0.0019 | 0.9529 | - |
10.4433 | 69500 | 0.0008 | 0.0018 | 0.9541 | - |
10.5184 | 70000 | 0.0007 | 0.0017 | 0.9551 | - |
10.5935 | 70500 | 0.0007 | 0.0018 | 0.9550 | - |
10.6687 | 71000 | 0.0008 | 0.0017 | 0.9554 | - |
10.7438 | 71500 | 0.0007 | 0.0017 | 0.9558 | - |
10.8189 | 72000 | 0.0007 | 0.0018 | 0.9558 | - |
10.8941 | 72500 | 0.0007 | 0.0018 | 0.9562 | - |
10.9692 | 73000 | 0.0009 | 0.0017 | 0.9559 | - |
11.0443 | 73500 | 0.0005 | 0.0017 | 0.9571 | - |
11.1195 | 74000 | 0.0006 | 0.0017 | 0.9570 | - |
11.1946 | 74500 | 0.0005 | 0.0017 | 0.9573 | - |
11.2697 | 75000 | 0.0005 | 0.0017 | 0.9574 | - |
11.3449 | 75500 | 0.0006 | 0.0017 | 0.9576 | - |
11.4200 | 76000 | 0.0006 | 0.0017 | 0.9577 | - |
11.4951 | 76500 | 0.0006 | 0.0017 | 0.9577 | - |
11.5702 | 77000 | 0.0005 | 0.0016 | 0.9582 | - |
11.6454 | 77500 | 0.0006 | 0.0017 | 0.9583 | - |
11.7205 | 78000 | 0.0005 | 0.0016 | 0.9584 | - |
11.7956 | 78500 | 0.0005 | 0.0016 | 0.9587 | - |
11.8708 | 79000 | 0.0005 | 0.0016 | 0.9588 | - |
11.9459 | 79500 | 0.0005 | 0.0016 | 0.9588 | - |
12.0 | 79860 | - | - | - | 0.9583 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.2.2+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}