SentenceTransformer based on yahyaabd/bps-custom-tokenizer-paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from yahyaabd/bps-custom-tokenizer-paraphrase-multilingual-MiniLM-L12-v2 on the statictable-triplets-all dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: yahyaabd/bps-custom-tokenizer-paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/bps-custom-tokenizer-paraphrase-multilingual-MiniLM-L12-v2-mnrl-2")
# Run inference
sentences = [
'Informasi lengkap dan terbaru mengenai statistik edukasi',
'Statistik Pendidikan Tahunan',
'Struktur Ongkos Riil Usaha Ternak dan Unggas di Rumah Tangga dengan Pola Pemeliharaan Dikandangkan, 2017',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
bps-statictable-ir
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8599 |
cosine_accuracy@5 | 0.9805 |
cosine_accuracy@10 | 0.987 |
cosine_precision@1 | 0.8599 |
cosine_precision@5 | 0.2326 |
cosine_precision@10 | 0.1391 |
cosine_recall@1 | 0.6663 |
cosine_recall@5 | 0.7919 |
cosine_recall@10 | 0.8157 |
cosine_ndcg@1 | 0.8599 |
cosine_ndcg@5 | 0.8115 |
cosine_ndcg@10 | 0.8116 |
cosine_mrr@1 | 0.8599 |
cosine_mrr@5 | 0.9119 |
cosine_mrr@10 | 0.9128 |
cosine_map@1 | 0.8599 |
cosine_map@5 | 0.7617 |
cosine_map@10 | 0.7558 |
Training Details
Training Dataset
statictable-triplets-all
- Dataset: statictable-triplets-all at 0ef226c
- Size: 10,998 training samples
- Columns:
query
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
query positive negative type string string string details - min: 6 tokens
- mean: 17.25 tokens
- max: 33 tokens
- min: 5 tokens
- mean: 25.66 tokens
- max: 58 tokens
- min: 4 tokens
- mean: 25.64 tokens
- max: 58 tokens
- Samples:
query positive negative Neraca arus kas triwulan II 2005 (ringkasan, )
Ringkasan Neraca Arus Dana, Triwulan Kedua, 2005, (Miliar Rupiah)
Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Provinsi dan Jenis Pekerjaan Utama (Rupiah), 2017
Hasil tangkapan ikan per provinsi, bedakan jenis penangkapan, 2013
Produksi Perikanan Tangkap Menurut Provinsi dan Jenis Penangkapan, 2000-2020
Ringkasan Neraca Arus Dana, Triwulan II, 2006, (Miliar Rupiah)
Bagaimana perubahan distribusi pengeluaran?
Persentase Perkembangan Distribusi Pengeluaran
Angka Kematian Bayi/AKB (Infant Mortality Rate/IMR) Menurut Provinsi, 1971-2020
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
statictable-triplets-all
- Dataset: statictable-triplets-all at 0ef226c
- Size: 10,998 evaluation samples
- Columns:
query
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
query positive negative type string string string details - min: 4 tokens
- mean: 17.25 tokens
- max: 34 tokens
- min: 4 tokens
- mean: 25.44 tokens
- max: 58 tokens
- min: 5 tokens
- mean: 25.23 tokens
- max: 58 tokens
- Samples:
query positive negative Data total penghasilan berbagai golongan rumah tangga setelah dipotong pajak, tahun 2000 (dalam )
Jumlah Pendapatan Setelah Pajak Menurut Golongan Rumah Tangga (miliar rupiah), 2000, 2005, dan 2008
Indeks Harga Konsumen per Kelompok di 82 Kota 1 (2012=100)
Bagaimana perkembangan impor barang modal pada tahun 2020
Impor Barang Modal, 1996-2023
Indeks Harga yang Diterima Petani (It), Indes Harga yang Dibayar Petani (Ib), dan Nilai Tukar Petani Subsektor Hortikultura (NTPH) di Indonesia (2007=100), 2008-2016
Konsumsi makanan per orang di Kalut: data mingguan, beda kelompok pengeluaran (2018)
Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Kalimantan Utara, 2018-2023
Ekspor Kimia Dasar Organik yang Bersumber dari Hasil Pertanian menurut Negara Tujuan Utama, 2012-2023
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32weight_decay
: 0.01warmup_ratio
: 0.1save_on_each_node
: Truefp16
: Truedataloader_num_workers
: 2load_best_model_at_end
: Trueeval_on_start
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Truesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 2dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | bps-statictable-ir_cosine_ndcg@10 |
---|---|---|---|---|
0 | 0 | - | 2.2208 | 0.3476 |
0.0645 | 20 | 1.7839 | 0.9899 | 0.5271 |
0.1290 | 40 | 0.7326 | 0.4401 | 0.7019 |
0.1935 | 60 | 0.3811 | 0.2612 | 0.7584 |
0.2581 | 80 | 0.2068 | 0.2111 | 0.7612 |
0.3226 | 100 | 0.2206 | 0.1526 | 0.7748 |
0.3871 | 120 | 0.1547 | 0.1065 | 0.7934 |
0.4516 | 140 | 0.1196 | 0.0895 | 0.7880 |
0.5161 | 160 | 0.1107 | 0.0821 | 0.8045 |
0.5806 | 180 | 0.1253 | 0.0737 | 0.7828 |
0.6452 | 200 | 0.0915 | 0.0636 | 0.8081 |
0.7097 | 220 | 0.0592 | 0.0555 | 0.8140 |
0.7742 | 240 | 0.055 | 0.0535 | 0.7992 |
0.8387 | 260 | 0.0531 | 0.0487 | 0.8005 |
0.9032 | 280 | 0.0626 | 0.0429 | 0.8035 |
0.9677 | 300 | 0.0406 | 0.0407 | 0.8033 |
1.0323 | 320 | 0.034 | 0.0430 | 0.8058 |
1.0968 | 340 | 0.0327 | 0.0392 | 0.8070 |
1.1613 | 360 | 0.0385 | 0.0425 | 0.8006 |
1.2258 | 380 | 0.0233 | 0.0347 | 0.8053 |
1.2903 | 400 | 0.027 | 0.0339 | 0.8111 |
1.3548 | 420 | 0.0323 | 0.0300 | 0.8046 |
1.4194 | 440 | 0.0308 | 0.0262 | 0.8126 |
1.4839 | 460 | 0.0343 | 0.0277 | 0.7961 |
1.5484 | 480 | 0.0192 | 0.0232 | 0.8080 |
1.6129 | 500 | 0.0248 | 0.0248 | 0.8057 |
1.6774 | 520 | 0.0178 | 0.0250 | 0.8062 |
1.7419 | 540 | 0.0158 | 0.0228 | 0.8096 |
1.8065 | 560 | 0.0171 | 0.0233 | 0.8073 |
1.8710 | 580 | 0.0204 | 0.0218 | 0.8178 |
1.9355 | 600 | 0.0261 | 0.0214 | 0.8204 |
2.0 | 620 | 0.0132 | 0.0215 | 0.8166 |
2.0645 | 640 | 0.0174 | 0.0189 | 0.8169 |
2.1290 | 660 | 0.0095 | 0.0185 | 0.8202 |
2.1935 | 680 | 0.0186 | 0.0173 | 0.8173 |
2.2581 | 700 | 0.0241 | 0.0168 | 0.8174 |
2.3226 | 720 | 0.0152 | 0.0158 | 0.8163 |
2.3871 | 740 | 0.0197 | 0.0158 | 0.8128 |
2.4516 | 760 | 0.0119 | 0.0156 | 0.8122 |
2.5161 | 780 | 0.0128 | 0.0151 | 0.8118 |
2.5806 | 800 | 0.0162 | 0.0148 | 0.8114 |
2.6452 | 820 | 0.011 | 0.0143 | 0.8117 |
2.7097 | 840 | 0.0098 | 0.0138 | 0.8128 |
2.7742 | 860 | 0.0092 | 0.0135 | 0.8111 |
2.8387 | 880 | 0.0102 | 0.0127 | 0.8109 |
2.9032 | 900 | 0.0118 | 0.0126 | 0.8115 |
2.9677 | 920 | 0.0128 | 0.0126 | 0.8116 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 3.4.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.2.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for yahyaabd/bps-custom-tokenizer-paraphrase-multilingual-MiniLM-L12-v2-mnrl-2
Dataset used to train yahyaabd/bps-custom-tokenizer-paraphrase-multilingual-MiniLM-L12-v2-mnrl-2
Evaluation results
- Cosine Accuracy@1 on bps statictable irself-reported0.860
- Cosine Accuracy@5 on bps statictable irself-reported0.980
- Cosine Accuracy@10 on bps statictable irself-reported0.987
- Cosine Precision@1 on bps statictable irself-reported0.860
- Cosine Precision@5 on bps statictable irself-reported0.233
- Cosine Precision@10 on bps statictable irself-reported0.139
- Cosine Recall@1 on bps statictable irself-reported0.666
- Cosine Recall@5 on bps statictable irself-reported0.792
- Cosine Recall@10 on bps statictable irself-reported0.816
- Cosine Ndcg@1 on bps statictable irself-reported0.860