qwen_unl_entropy

This model is a fine-tuned version of trl-lib/qwen1.5-0.5b-sft on the yakazimir/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6475
  • Rewards/chosen: -1.3030
  • Rewards/rejected: -1.4992
  • Rewards/accuracies: 0.5712
  • Rewards/margins: 0.1962
  • Logps/rejected: -1.4992
  • Logps/chosen: -1.3030
  • Logits/rejected: 0.0833
  • Logits/chosen: 0.0165

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
1.6549 0.2141 400 1.6939 -1.3375 -1.4631 0.5564 0.1256 -1.4631 -1.3375 0.3664 0.2799
1.6692 0.4282 800 1.6718 -1.3151 -1.4532 0.5579 0.1381 -1.4532 -1.3151 0.3708 0.2889
1.6206 0.6422 1200 1.6640 -1.3083 -1.4522 0.5564 0.1438 -1.4522 -1.3083 0.3523 0.2714
1.6566 0.8563 1600 1.6600 -1.3096 -1.4585 0.5593 0.1488 -1.4585 -1.3096 0.3578 0.2764
1.7104 1.0704 2000 1.6553 -1.3006 -1.4569 0.5660 0.1563 -1.4569 -1.3006 0.2528 0.1781
1.6123 1.2845 2400 1.6521 -1.3029 -1.4743 0.5668 0.1713 -1.4743 -1.3029 0.1650 0.0956
1.6688 1.4986 2800 1.6486 -1.3000 -1.4729 0.5690 0.1729 -1.4729 -1.3000 0.1751 0.1050
1.6012 1.7127 3200 1.6495 -1.3009 -1.4722 0.5668 0.1713 -1.4722 -1.3009 0.2139 0.1401
1.5646 1.9267 3600 1.6478 -1.2987 -1.4778 0.5705 0.1791 -1.4778 -1.2987 0.1771 0.1052
1.5351 2.1408 4000 1.6470 -1.3020 -1.4952 0.5712 0.1932 -1.4952 -1.3020 0.1238 0.0547
1.5307 2.3549 4400 1.6469 -1.3054 -1.5043 0.5712 0.1988 -1.5043 -1.3054 0.0587 -0.0064
1.5433 2.5690 4800 1.6472 -1.3037 -1.5017 0.5727 0.1980 -1.5017 -1.3037 0.1609 0.0880
1.5671 2.7831 5200 1.6473 -1.3030 -1.4994 0.5720 0.1964 -1.4994 -1.3030 0.0927 0.0252
1.5482 2.9972 5600 1.6475 -1.3030 -1.4992 0.5712 0.1962 -1.4992 -1.3030 0.0833 0.0165

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
17
Safetensors
Model size
464M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yakazimir/qwen_unl_entropy

Base model

Qwen/Qwen1.5-0.5B
Finetuned
(24)
this model

Dataset used to train yakazimir/qwen_unl_entropy