|
--- |
|
license: cc-by-4.0 |
|
base_model: deepset/roberta-base-squad2 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: my_awesome_qa_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/yashwan2003-Jain%20University/huggingface/runs/mkldx3lf) |
|
# my_awesome_qa_model |
|
|
|
This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1742 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 10 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| No log | 1.0 | 198 | 0.2250 | |
|
| No log | 2.0 | 396 | 0.2104 | |
|
| 0.3324 | 3.0 | 594 | 0.2199 | |
|
| 0.3324 | 4.0 | 792 | 0.1904 | |
|
| 0.3324 | 5.0 | 990 | 0.1642 | |
|
| 0.1403 | 6.0 | 1188 | 0.1693 | |
|
| 0.1403 | 7.0 | 1386 | 0.1531 | |
|
| 0.1083 | 8.0 | 1584 | 0.1712 | |
|
| 0.1083 | 9.0 | 1782 | 0.1538 | |
|
| 0.1083 | 10.0 | 1980 | 0.1498 | |
|
| 0.0925 | 11.0 | 2178 | 0.1538 | |
|
| 0.0925 | 12.0 | 2376 | 0.1627 | |
|
| 0.0609 | 13.0 | 2574 | 0.1631 | |
|
| 0.0609 | 14.0 | 2772 | 0.1707 | |
|
| 0.0609 | 15.0 | 2970 | 0.1742 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|