File size: 3,351 Bytes
00ec010 ae6dd48 631ede9 868fc59 a143240 631ede9 868fc59 631ede9 3066f6d 631ede9 9d150e2 dd5cb06 a5b71d8 9d150e2 dd5cb06 9d150e2 dd5cb06 9d150e2 dd5cb06 9d150e2 dd5cb06 9d150e2 dd5cb06 3555163 dd5cb06 3555163 dd5cb06 9d150e2 dd5cb06 9d150e2 a5b71d8 00ec010 3066f6d 00ec010 3066f6d 00ec010 ae6dd48 00ec010 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
language: en
tags:
- image-classification
- ai-detection
- vit
license: mit
---
# AI Image Detector
## Model Description
This model is designed to detect whether an image is real or AI-generated. It uses Vision Transformer (ViT) architecture to provide accurate classification.
## Model Usage
```python
from transformers import ViTImageProcessor, ViTForImageClassification
from PIL import Image
import torch
# تحميل النموذج والمعالج
processor = ViTImageProcessor.from_pretrained("C:/Users/SUPREME TECH/Desktop/SAM3/ai-image-detector")
model = ViTForImageClassification.from_pretrained("C:/Users/SUPREME TECH/Desktop/SAM3/ai-image-detector")
def detect_image(image_path):
# فتح وتجهيز الصورة
image = Image.open(image_path)
if image.mode != 'RGB':
image = image.convert('RGB')
# معالجة الصورة
inputs = processor(images=image, return_tensors="pt")
# الحصول على التنبؤات
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits.softmax(dim=-1)
# تحليل النتائج
scores = predictions[0].tolist()
results = [
{"label": "REAL", "score": scores[0]},
{"label": "FAKE", "score": scores[1]}
]
# ترتيب النتائج حسب درجة الثقة
results.sort(key=lambda x: x["score"], reverse=True)
return {
"prediction": results[0]["label"],
"confidence": f"{results[0]['score']*100:.2f}%",
"detailed_scores": [
f"{r['label']}: {r['score']*100:.2f}%"
for r in results
]
}
# كود للاختبار
if __name__ == "__main__":
# يمكنك تغيير مسار الصورة هنا
image_path = "path/to/your/image.jpg"
try:
result = detect_image(image_path)
print("\nنتائج تحليل الصورة:")
print(f"التصنيف: {result['prediction']}")
print(f"درجة الثقة: {result['confidence']}")
print("\nالتفاصيل:")
for score in result['detailed_scores']:
print(f"- {score}")
except Exception as e:
print(f"حدث خطأ: {str(e)}")
```
## Classes
The model classifies images into two categories:
- **Real Image (0)**: The image is real and not AI-generated.
- **AI Generated (1)**: The image is generated by AI.
## Technical Details
- **Model Architecture**: Vision Transformer (ViT)
- **Input**: Images (RGB)
- **Output**: Binary classification with confidence score
- **Max Image Size**: 224x224 (automatically resized)
## Requirements
- `transformers>=4.30.0`
- `torch>=2.0.0`
- `Pillow>=9.0.0`
## Limitations
- Best performance with clear, high-quality images.
- May have reduced accuracy with heavily edited photos.
- Designed for general image detection.
## Web Integration Example
```javascript
async function detectImage(imageFile) {
const formData = new FormData();
formData.append('image', imageFile);
const response = await fetch('YOUR_API_ENDPOINT', {
method: 'POST',
body: formData
});
return await response.json();
}
```
## Developer
- **Created by**: yaya36095
- **License**: MIT
- **Repository**: [https://huggingface.co/yaya36095/ai-image-detector](https://huggingface.co/yaya36095/ai-image-detector)
|