dfm1 / README.md
yemen2016's picture
Upload tokenizer
f0764d2 verified
metadata
base_model: KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align
library_name: transformers
metrics:
  - accuracy
  - precision
  - recall
  - f1
tags:
  - generated_from_trainer
model-index:
  - name: dfm1
    results: []

dfm1

This model is a fine-tuned version of KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align on an unknown dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.8868
  • Precision: 0.8861
  • Recall: 0.8868
  • F1: 0.8855
  • Loss: 0.5432

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Precision Recall F1 Validation Loss
No log 0.9412 8 0.7844 0.7464 0.7844 0.7612 0.7436
No log 2.0 17 0.8999 0.8922 0.8999 0.8914 0.3252
No log 2.9412 25 0.9214 0.9226 0.9214 0.9121 0.3213
No log 4.0 34 0.9164 0.9235 0.9164 0.9176 0.3572
No log 4.9412 42 0.8880 0.8875 0.8880 0.8857 0.3576
No log 6.0 51 0.8907 0.8894 0.8907 0.8898 0.3993
No log 6.9412 59 0.8822 0.8822 0.8822 0.8806 0.4444
No log 8.0 68 0.8876 0.8867 0.8876 0.8865 0.4480
No log 8.9412 76 0.8987 0.8978 0.8987 0.8979 0.4688
No log 10.0 85 0.8984 0.8972 0.8984 0.8975 0.4845
No log 10.9412 93 0.8895 0.8887 0.8895 0.8884 0.5172
No log 12.0 102 0.8891 0.8882 0.8891 0.8881 0.5349
No log 12.9412 110 0.8907 0.8897 0.8907 0.8896 0.5343
No log 14.0 119 0.8895 0.8886 0.8895 0.8884 0.5374
No log 14.9412 127 0.8868 0.8861 0.8868 0.8855 0.5317
No log 16.0 136 0.8853 0.8847 0.8853 0.8839 0.5383
No log 16.9412 144 0.8853 0.8847 0.8853 0.8839 0.5402
No log 18.0 153 0.8865 0.8858 0.8865 0.8851 0.5429
No log 18.8235 160 0.8868 0.8861 0.8868 0.8855 0.5432

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Tokenizers 0.19.1