dfm2_FGN

This model is a fine-tuned version of KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1487
  • F1-score: 0.8233

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1-score
No log 1.0 120 0.5474 0.7676
No log 2.0 240 0.7339 0.7596
No log 3.0 360 0.6433 0.7897
No log 4.0 480 0.9757 0.8049
0.4762 5.0 600 1.2749 0.7930
0.4762 6.0 720 1.0429 0.8197
0.4762 7.0 840 1.2813 0.7794
0.4762 8.0 960 1.1487 0.8233
0.0694 9.0 1080 1.4694 0.8015
0.0694 10.0 1200 1.5677 0.7864
0.0694 11.0 1320 1.4541 0.7916
0.0694 12.0 1440 1.4474 0.7941
0.0235 13.0 1560 1.4064 0.7958
0.0235 14.0 1680 1.4497 0.8008
0.0235 15.0 1800 1.3708 0.8058
0.0235 16.0 1920 1.4052 0.8058
0.0122 17.0 2040 1.3883 0.8115
0.0122 18.0 2160 1.4286 0.8126
0.0122 19.0 2280 1.4478 0.8066
0.0122 20.0 2400 1.4547 0.8066

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
22
Safetensors
Model size
355M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yemen2016/dfm2_FGN