dfm_ED

This model is a fine-tuned version of KennethEnevoldsen/dfm-sentence-encoder-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6486
  • F1-score: 0.9180

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1-score
No log 1.0 69 0.4303 0.8683
No log 2.0 138 0.5203 0.8442
No log 3.0 207 0.6280 0.8926
No log 4.0 276 0.6846 0.9003
No log 5.0 345 0.7642 0.9014
No log 6.0 414 0.8076 0.9014
No log 7.0 483 0.8324 0.9014
0.1316 8.0 552 0.8670 0.9010
0.1316 9.0 621 1.2453 0.8499
0.1316 10.0 690 0.6486 0.9180
0.1316 11.0 759 1.1641 0.8671
0.1316 12.0 828 0.8504 0.9097
0.1316 13.0 897 0.8590 0.9096
0.1316 14.0 966 0.8651 0.9096
0.0051 15.0 1035 0.8829 0.8934
0.0051 16.0 1104 0.9813 0.8848
0.0051 17.0 1173 0.9844 0.8848
0.0051 18.0 1242 0.9857 0.8848
0.0051 19.0 1311 0.9858 0.8848
0.0051 20.0 1380 0.9859 0.8848

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
355M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yemen2016/dfm_ED

Finetuned
(5)
this model