yenrong's picture
Update README.md
909abf4 verified
metadata
library_name: transformers
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - recall
  - precision
  - f1
model-index:
  - name: AST_EmoRecog_Model_v4
    results: []

AST_EmoRecog_Model_v4

This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the IEMOCAP dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4615
  • Accuracy: 0.5159
  • Recall: 0.4007
  • Precision: 0.4956
  • F1: 0.4090

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall Precision F1
1.4443 1.0 377 1.3359 0.4695 0.3408 0.4793 0.3099
1.1556 2.0 754 1.2506 0.5266 0.3877 0.6026 0.3970
0.8988 3.0 1131 1.2633 0.5279 0.4175 0.5148 0.4208
0.6187 4.0 1508 1.3426 0.5279 0.4031 0.5425 0.4153
0.3944 5.0 1885 1.4266 0.5206 0.4021 0.5256 0.4152
0.2555 6.0 2262 1.4615 0.5159 0.4007 0.4956 0.4090

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0