See axolotl config
axolotl version: 0.4.0
base_model: CohereForAI/c4ai-command-r-v01
load_in_8bit: false
load_in_4bit: false
strict: false
hub_model_id: yentinglin/command-r-ja-sharegpt
hub_strategy: end
datasets:
- path: NTQAI/sharegpt-clean-ja
type: sharegpt
conversation: chatml
chat_template: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0
output_dir: ./output/ja/sft/command-r/sharegpt/
sequence_len: 4096
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: JA-LLM
wandb_entity:
wandb_watch:
wandb_name: sft-fft-command-r-sharegpt-clean-ja
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
cosine_min_lr_ratio: 0.1 # decay lr to some percentage of the peak lr, e.g. cosine_min_lr_ratio=0.1 for 10% of peak lr
learning_rate: 1e-5
adam_beta1: 0.9
adam_beta2: 0.95
adam_eps: 0.00001
max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 5
xformers_attention:
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: true
warmup_ratio: 0.02 # cannot use with warmup_steps
evals_per_epoch: 1
eval_table_size:
save_per_epoch: 1
save_total_limit: 1
debug:
deepspeed: deepspeed_configs/zero3_bf16.json # multi-gpu only
weight_decay: 0.001
fsdp:
fsdp_config:
special_tokens:
ddp_timeout: 180000
special_tokens:
eos_token: "<|im_end|>"
tokens:
- "<|im_start|>"
command-r-ja-sharegpt
This model is a fine-tuned version of CohereForAI/c4ai-command-r-v01 on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 4
Training results
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for yentinglin/command-r-ja-sharegpt
Base model
CohereForAI/c4ai-command-r-v01