metadata
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: results
results: []
results
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9724
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 0.03
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0248 | 0.03 | 50 | 1.0145 |
1.0168 | 0.06 | 100 | 1.0078 |
1.008 | 0.09 | 150 | 1.0058 |
1.0082 | 0.12 | 200 | 1.0030 |
0.9846 | 0.14 | 250 | 1.0005 |
0.9807 | 0.17 | 300 | 0.9998 |
0.9968 | 0.2 | 350 | 0.9992 |
0.9834 | 0.23 | 400 | 0.9967 |
1.0267 | 0.26 | 450 | 0.9953 |
1.0119 | 0.29 | 500 | 0.9937 |
0.9759 | 0.32 | 550 | 0.9939 |
0.9978 | 0.35 | 600 | 0.9921 |
1.0145 | 0.38 | 650 | 0.9901 |
1.0064 | 0.4 | 700 | 0.9897 |
0.9949 | 0.43 | 750 | 0.9890 |
0.9936 | 0.46 | 800 | 0.9865 |
0.9944 | 0.49 | 850 | 0.9852 |
0.9819 | 0.52 | 900 | 0.9845 |
0.9991 | 0.55 | 950 | 0.9826 |
0.9874 | 0.58 | 1000 | 0.9812 |
0.981 | 0.61 | 1050 | 0.9798 |
0.9807 | 0.64 | 1100 | 0.9789 |
0.9639 | 0.67 | 1150 | 0.9776 |
0.9645 | 0.69 | 1200 | 0.9767 |
0.9788 | 0.72 | 1250 | 0.9758 |
0.9823 | 0.75 | 1300 | 0.9751 |
0.9906 | 0.78 | 1350 | 0.9745 |
0.9536 | 0.81 | 1400 | 0.9738 |
0.9635 | 0.84 | 1450 | 0.9732 |
0.9754 | 0.87 | 1500 | 0.9729 |
0.9785 | 0.9 | 1550 | 0.9727 |
0.9828 | 0.93 | 1600 | 0.9725 |
0.9951 | 0.95 | 1650 | 0.9724 |
0.983 | 0.98 | 1700 | 0.9724 |
Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2